Bridging the Gap: Developing a
Standardized Framework for any
C++4 Code Coverage Tool

Ahmed Abdulbaki Ibrahim

ahmed.ibrahim3@student.uva.nl

July 16, 2023, 51 pages

Academic supervisor: Dr. ir. M.C. (Martin) Bor, m.c.bor@uva.nl
Daily supervisor: Nicola Rossi, nicola@solidsands.nl
Host organisation: Solid Sands B.V., solidsands.com

x UNIVERSITEIT VAN AMSTERDAM
BI FACULTEIT DER NATUURWETENSCHAPPEN, WISKUNDE EN INFORMATICA
x MASTER SOFTWARE ENGINEERING
http://www.software-engineering-amsterdam.nl

Abstract

Code coverage tools showcase the degree to which software source code has been thoroughly tested, fol-
lowing the execution of a specific test suite. As a measure of software quality, code coverage should ideally
be accurate and consistent, allowing no room for discrepancies in its assessment of source code. Unfor-
tunately, this is not the case in reality. For software testers to manage such inconsistencies effectively, a
standardized framework is necessary for their identification and mitigation.

However, developing a systematic protocol presents a challenge due to the diverse nature of these
inconsistencies; some are tool-specific shortcomings, while others arise from confusion about the coverage
status of particular code statements. The highly language-dependent nature of coverage tools, along
with the numerous different types of coverage criteria, further complicates the issue. As a result, we
have focused solely on the C++ language specification and the statement, branch, modified condition-
decision coverage criteria. Our selections are motivated by the need for coverage tools to comply with
the development of safety-critical systems and their applications.

Our proposed framework comprises three key elements: a robust set of software requirements that
define the necessary functionalities of any coverage tool, an innovative test suite that incorporates all
aspects of the aforementioned requirement set in addition to ambiguous code statements, and a Python
tool that evaluates the performance of any C++4 coverage tool in line with our unique test suite.

The necessity to address these concerns is emphasized by a significant gap in current literature and
research examining discrepancies in code coverage tools” behaviour. This represents a considerable risk
to safety-critical systems and their compliance with pertinent guidelines and international standards,
such as DO-178C and 1SO26262.

Contents

Introduction
1.1 Problem statement
1.1.1 Research questions
1.1.2 Research method
1.2 Contributions
1.3 Outline e e e
Background
2.1 Terminology e e e e
2.2 Coverage Criteria
2.2.1 Statement
2.22 Function e
223 Branch e
224 MC/DCo
2.2.5 Multiple Condition
2.3 Safety-Critical Systems L
2.3.1 Automotive Systems
2.3.2 Aviation Systems
2.3.3 Railway Systems
2.3.4 Programmable-Electronic Systems 0oL
2.4 MC/DC Cruciality oo e
2.5 Source-code vs. Byte-code Instrumentation 0oL
2.6 Ambiguous Scenarios e
2.7 Compile-time vs. Run-time Coverage

Coverage Tool Requirements

3.1 Statement Coverage Requirements

3.2 Branch Coverage Requirements L

3.3 MC/DC Coverage Requirements i

Test Suite Design

4.1 Coverage Files e
4.1.1 Standard Format
4.1.2 Standard Execution Pattern
4.1.3 Coverage File Generation L o oo
4.1.4 Coverage Object Generationo

4.2 Test Suite Structure L
4.2.1 Covered Statements
4.2.2 Not Covered Statements e e e e
4.2.3 Non-Executable Statements Lo
4.2.4 Compile-time Evaluated Statements
4.2.5 Compile-time Unevaluated Statements
4.2.6 Branching
4.2.7 Condition Count e e e
4.2.8 Condition Evaluation e
4.2.9 Condition Independence (MC/DC) o

15
16
17
18

CONTENTS

5 Verification Tool Development 26
5.1 Object-Oriented Approach e 26
5.2 Test Driver Development e 27
5.3 Regular Expression Utility 28

6 Results 30
6.1 Default Constructors e 30
6.2 MacroS e e e 31
6.3 Inline Functions L 31
6.4 Non-deterministic Code e 31
6.5 Templates L e 32
6.6 Exception Handling L L 32
6.7 Optimizations e 33
6.8 Multi-threading L 33
6.9 Dead Code e 34

7 Discussion 35
7.1 Disparity between Constructor Declaration and Definition 35
7.2 Coverage of Macro Definitions and Calls 36
7.3 The Utility of Inline Functions 36
7.4 Handling of Non-Deterministic Code 37
7.5 Treatment of Function Templates 37
7.6 Behaviour of the Exception-Handling Mechanism 38
7.7 Accounting for Compiler Optimizations 38
7.8 Inconsistencies of Multithreading 39
7.9 Coverage of Dead Code e 40
7.10 Threats to validity 40

7.10.1 Internal Validity 40
7.10.2 External Validity 40

8 Related work 41
8.1 eXVantage - A Survey of Coverage Based Testing Tools 41
8.2 C2V - Hunting for Bugs in Code Coverage Tools via Randomized Differential Testing . . 42
8.3 nwce - Experimental Evaluation of a Test Coverage Analyzer for C/C++. 42
8.4 Enhancing Software Testing by Judicious Use of Code Coverage Information 42

9 Conclusion 44
9.1 RQL . . 44
9.2 RQ2 . . o e 44
9.3 RQ3 . . e 44
9.4 Future work e e e e 45

Bibliography 47

Appendix A Non-crucial information 50

Chapter 1

Introduction

Software testing serves as a critical component in ensuring the quality of all developed systems and
applications [1]. We can define it as a process designed to evaluate a program or system’s specific
attributes to ensure it meets its required results [2]. Ideally, the intent is not just to confirm functionality,
but also to uncover errors [3]. The testing process often includes writing a variety of test cases to examine
the breadth of a software’s functionalities, cumulatively forming a ‘test suite’. The lack of a robust
software testing infrastructure can have significant economic consequences, as evidenced by a case study
revealing that it has cost the U.S. automotive and aerospace industries approximately 2$ billion in a
single year [4].

Code coverage is a metric showcasing the percentage of source code that has been executed by the
test suite implemented during the software testing phase. As a result, it is commonly regarded as a
primary indicator of test suite quality [5]. In fact, it has been established that code coverage correlates
to the effectiveness of test suites, where effectiveness is defined as the test suite’s ability to detect and
eliminate software bugs [6]. The software components responsible for this metric, code coverage tools,
are therefore an essential aspect of ensuring software quality.

These tools function by ‘instrumenting’ the software code, a process that integrates additional data
structures to track which segments are covered by testing. This instrumentation can occur either at the
source-code level (pre-compilation) or at the byte-code level (post-compilation) [7].

1| #include <iostream>

;| static unsigned long long __gcov_counter [8] = {0};
1| // Each basic block gets a coverage counter

5/ int square (int x) {

6 __gcov_counter [0]++;

#include <iostream> 7 int result = x * x;
8 __gcov_counter [1]++;
int square(int x) { 9 return result;
int result = x * x; 10 __gcov_counter [2]++;
return result; 1] ¥
3 12
13/ int main() {
int main() { 14 __gcov_counter [3]++;
for(int i = -4; i <= 4; i++) { |15 for(int i = -4; i <= 4; i++) {
if (i % 2 == 0 && i != 0) { 16 __gcov_counter [4]++;
std::cout << i << "squared = " |i7 if (i % 2 == 0 && i !'= 0) {
<< square (i) << "\n"; 18 __gcov_counter [5]++;
} 19 std::cout << i << '"squared = "
3 << square (i) << "\n";
return O; 20 __gcov_counter [6]++;
s} 21 }
22 }

Listing 1.1: Original Source Code , return O;
24 __gcov_counter [7]++;

25 }

27| void __gcov_exit () {}

Listing 1.2: Instrumented Source Code

CHAPTER 1. INTRODUCTION

The listings 1.1 and 1.2 illustrate conceptually how a coverage tool utilizing source-code instrumen-
tation, such as Geov [8], employs global data structures to record coverage information. The counter at
position 5 (__gcov_counter[5]), responsible for keeping track of the ‘if’ statement’s execution, depends
on the control flow to be incremented. There are numerous code coverage criteria, one of which is state-
ment coverage, showcased by the listings provided above. Additionally, there are other coverage criteria
of interest to us, such as branch and modified condition/decision.

Unlike byte-code instrumenting coverage tools that may be language-agnostic (since many program-
ming languages sharing the same environment compile identical bytecode [9][10]), source-code instru-
menting coverage tools are highly language-specific [11]. Therefore, one might expect a degree of deter-
minism in the reported coverage metrics of a particular application’s source code. However, this degree
isn’t necessarily high for two main reasons: misalignments exist between language-specific statements
and coverage tools’ interpretation, and there’s a lack of comprehensive specification/documentation gov-
erning the handling of each statement type. This lack of determinism significantly affects developers’
confidence in code coverage tools, a situation that can and should be rectified.

1.1 Problem statement

Discrepancies in the handling of source code by coverage tools undermine confidence in their field-wide
use. This is highly impractical since they play an integral part in validating software quality, particularly
for safety-critical systems. At Solid Sands, our main focus is on C/C++ library and compiler validation.
Still, we have encountered significant challenges due to the inconsistencies produced by code coverage
tools during various stages of development. We believe these inconsistencies can be mitigated, leading
to notable improvements in both economic efficiency and the pace of development.

1.1.1 Research questions

To tackle these issues, we aim to bridge the gaps between code coverage tools by reducing the frequency
of such irregularities. As a result, we have deduced the following research questions in line with our
objective:

Research Question 1: What essential requirements must a code coverage tool satisfy to effectively
evaluate the completeness of C++ source code testing within safety-critical systems and applications?

Research Question 2: How can we design a test suite that evaluates these key requirements while
handling ambiguous C++ coverage scenarios effectively?

Research Question 3: How can we implement a tool to accurately assess the effectiveness of vari-
ous C++ code coverage tools in accordance with our devised test suite?

1.1.2 Research method

The research aspects of this paper are systematically approached through three primary methods:

Literature Review and Requirement Analysis: Initially, we review the existing literature on
code coverage tools, with an emphasis on their utility in testing C++ source code for safety-critical
systems. Also, we will analyse these systems’ specifications and requirements to recognize which key
features the coverage tools must possess to sufficiently validate them. The literature review’s findings
will promote the elicitation of a robust set of requirements that code coverage tools should satisfy.

Test Suite Design: Secondly, we design a comprehensive test suite, guided by the software re-
quirements developed in the previous method. For this, we will formulate a collection of test units that
evaluate these necessary functionalities. Among the written units, we focus on designing tests that ad-
dress ambiguous coverage scenarios in C++4 source code, identified through our literature review and
our own observations. The end goal is to ensure that our test suite can effectively assess the reliability
and quality of code coverage tools.

Tool Development and Evaluation: Thirdly, we develop a tool using Python to assess the con-
formance of any C++ code coverage tool capitalizing on object-oriented programming.

CHAPTER 1. INTRODUCTION

This developed tool will be designed to utilise our test suite and report metrics on each coverage tool’s
performance. An analysis stage follows, where we observe the reported metrics and evaluate each tool’s
conformity to requirements and coverage of test cases. Finally, we make use of our analysis to assess
each coverage tool’s reliability and acknowledge potential areas of improvement.

Throughout research, we aim to maintain an iterative approach by revising our three aspects of
research to account for feedback and new findings. This will aid our research by keeping it up-to-date.
We are motivated to document the methods we employ and the findings we reach thoroughly, to provide
later researchers with transparency and the opportunity to replicate and extend our work.

1.2 Contributions

Our research makes the following significant contributions:

1. Proposing a concrete set of requirements supervising the functionality of such tools for various
coverage criteria.

2. Developing a test suite that checks for all the aforementioned requirements in addition to ambiguous
coverage scenarios.

3. Implementing a tool that can automate the verification of any C++ code coverage tool in accor-
dance with our designed test-suite.

1.3 Outline

In Chapter 2 we describe the background of this thesis. Chapter 3 describes the robust set of requirements
elicited for any code coverage tool operating in the safety-critical domain. It is subsequently followed by
Chapter 4, where we discuss the design process of a test suite in accordance with the elicited requirements.
Afterwards, Chapter 5 demonstrates how we developed a tool that can verify any C+4 code coverage
tool’s compliance with our test suite. Results are shown in Chapter 6 and discussed in Chapter 7. We
examine the work related to our thesis in Chapter 8 and, finally, we present our concluding remarks in
Chapter 9 together with future work.

Chapter 2

Background

This chapter presents the necessary background information for this thesis. Initially, in section 2.1, we
define some basic terminology that will be used throughout the paper. Afterwards, section 2.2 provides
an overview of the various code coverage criteria. Section 2.3 showcases the requirements and coverage
criteria of particular interest to safety-critical systems and their applications, whereas section 2.4 outlines
the necessity of incorporating MC/DC into our focus. Section 2.5 demonstrates the key differences
between source-code and byte-code instrumenting coverage tools, and section 2.6 gives insight onto the
types of scenarios and statements which coverage tools may render ambiguous. Finally, the distinction
between run-time coverage and compile-time coverage is made in section 2.7.

2.1 Terminology

We would like to define the following terms for clarity:

Code Coverage: A percentage metric showing the extent to which a program’s source code is executed
when a particular test suite runs. For this thesis, the term ‘test coverage’ is interchangeable with ‘code
coverage’ as they refer to the same metric. Outside our scope, ‘test coverage’ can be interpreted as a
metric representing an overall degree of the testing procedures.

Test unit: A single file (.cpp in our case) that tests a particular functionality or requirement.

Test Suite: A comprehensive collection of test units that span all requirements. Throughout this paper,
we use ‘test suite’ to refer to the unit tests we’ve developed that we expect adequate coverage tools to
pass. Not to be confused with the conventional ‘test suite’ that a quality engineer or software tester
formulates during regular software testing procedures.

Gecov: A free, open-source code coverage analysis tool.

IS0-26262: An international functional safety standard for the development of electrical and electronic
systems in automotives.

MC/DC: Modified Condition/Decision Coverage, a particular coverage criterion of great significance to
safety-critical systems.

2.2 Coverage Criteria

There are various different criteria by which the degree of coverage can be assessed.

2.2.1 Statement

The most basic criterion would be statement coverage, which was conceptually illustrated in Listing
1.2. To achieve statement coverage, the tool traverses the source code line-by-line and reports on the
execution status of every statement. 100% coverage of this criterion is achieved if every single statement
is covered.

2.2.2 Function

Another common criterion would be function coverage, for which the tool parses every function and
reports whether it has been called. 100% coverage of this criterion is achieved if every single function is
called.

10

11

12

13
14

CHAPTER 2. BACKGROUND

2.2.3 Branch

A third criterion, branch/decision coverage, is concerned with the tool checking every control structure
(if-else, do-while, switch-case...etc.) to ensure each outcome (true/false) is taken at least once. 100%
coverage of this criterion is achieved if every decision has each outcome evaluated during testing. Al-
though this criterion is more robust than statement coverage, it doesn’t measure up to the succeeding
one: MC/DC [3].

#include <iostream>

static unsigned long long __gcov_counter [8] = {0};
// Each basic block gets a coverage counter

aoR W N R

// Each boolean expression gets two branching
counters (true/false)

s| int square (int x) {

9 __gcov_counter [0] ++;

5| F

10 int result = x * x;
11 __gcov_counter [1]++;
12 return result;

13 __gcov_counter [2] ++;

#include <iostream>

int square(int x) {
int result = x * x;
return result;

}

16| int main () {

int mainQ) { 17 __gcov_counter [3]++;

for(int i = -4; i <= 4; i++) | B B S 60 £ &5 op o) Al
{ 19
if (i % 2 ==10¢& i '=0) { |7
std::cout << i << "squared = . --geov_counter [4]++;
22 if (i % 2 == 0 && i !'= 0) {

" << square(i) << "\n";
}
}

return O;

27 __gcov_counter [5]++;

28 std::cout << i << "squared = "
<< square (i) << "\n";

50 __gcov_counter [6]++;

30 }

31 }

32 return O;

33 __gcov_counter [7T]++;

34| }

Listing 2.1: Original Source Code

36| void __gcov_exit () {}

Listing 2.2: Conceptual Instrumented Code (Branch)

By definition, achieving branch coverage implies the achievement of statement coverage, since evalu-

ating every entry point and every statement is sufficient for the latter. In addition to the initial counters
implemented by Gcov for statement coverage, there are further global data structures (evident in lines
5 and 6) that are added to track the potential branching taking place in the program. The ‘for’ loop
in line 18 requires two branches to be evaluated (when the loop condition evaluates to true and false)
whereas the ‘if” statement on line 22 requires four branches for its two conditions (the first and second
condition both being covered for true and false). As a result, Geov declares six branching counters in
total.
An important note is that the illustrated instrumentation is conceptual, to aid in comprehending the
mechanisms of handling branching. In reality, Gcov instruments at compile-time with the use of command
flags in the GCC compiler [12]. The tool and compiler work together to instrument at the source-level,
but leave the original source file unaffected. The generated output looks like listing 2.3:

CHAPTER 2. BACKGROUND

= l:#include <iostream>

- 2:

4: 3:int square(int x) {

4: 4: int result = x * x;

4 5: return result;

= 6:}

- T:

1: 8:int main () {

10: 9: for(int i = -4; i <= 4; i++) {

branch 0 taken 90%
branch 1 taken 10% (fallthrough)

O 10: if (i % 2 ==0 && i != 0) {

branch O taken 567% (fallthrough)

branch 1 taken 44Y

branch 2 taken 80% (fallthrough)

branch 3 taken 207%

4: 11: std::cout << i << "squared = " << square(i) << "\n";
=3 12: }

-: 183 }

1: 14: return O;

=3 15gJ

Listing 2.3: Gcov’s Coverage Report

The initial branching taking place following the for statement demonstrates the percentage of times
the loop was entered. Starting from -4 to 4 inclusive, the loop was entered 9 times. On the following
increment, where i was equal to 5, the loop condition broke, causing an exit. Thus, the ‘true’ outcome
branch shows a 9/10 or 90% metric. The fallthrough branch, indicative of the ‘false’ outcome, reports
1/10 or 10% as a result.

The branching metrics following the if statement are slightly more complex due to short-circuiting.
Short-circuit evaluations occur when compilers ignore the remaining conditionals in a boolean expres-
sion as their evaluation is deemed unnecessary to reach the correct outcome [13]. For example, in

if (a == Il b == || ¢ == 0),if a == 0 is found to be true, b and c are not evaluated as
the outcome will be true regardless. The same concept appliesto if (a == 0 && b == 0 && c == 0) ,
if the first condition is unequal to zero then the rest are ignored and the expression’s outcome is deemed
false.

Since C++ utilizes short-circuit evaluation for boolean expressions [14], the first boolean decision of the
statement’s expression (1 % 2 == 0) will act as an outer branch to the inner branch expression of the
second decision (i != 0) as seen in listing 2.4.

1| // Original boolean expression

ol if (i % 2 == 0 && i != 0) {

i }

5| // Expression’s short-circuit evaluation
6| if (i % 2 == 0){

7 if(i != 0){

8 ..

0 }

o] ¥

Listing 2.4: Short-circuit evaluation example

Unlike the earlier if statement where the fallthrough branch was ‘false’, the && operator’s short-
circuit behaviour causes the outer branch to fallthrough to the inner expression when it is ‘true’ (had
it been false, the inner expression would be ignored as it’s unnecessary in outcome evaluation). Conse-
quently, Geov assigns two branches (true/false) to the outer decision (branch 0 and branch 1) and two
branches to the inner decision (branch 2 and branch 3).

N

CHAPTER 2. BACKGROUND

From the previous for loop, we know the entire boolean expression is evaluated nine times. The outer
decision, i % 2 == 0, is true (branch 0) when i is equal to -4, -2, 0, 2 and 4. Achieving a total of
5/9 outcomes, or 56%. On the other hand, it is false (branch 1) when i is equal to -3, -1, 1 and 3 for a
result of 4/9 (44%).

From the 5 fallthrough instances reaching the inner decision (i equating to -4, -2, 0, 2 and 4), the
expression evaluates to false (branch 3) and falls through to the cout statement on line 11 four times
for a metric of 4/5 or 80%. Only once (when i =0) does the innner decision evaluate to ‘true’ (branch
4), 1/5 times or 20%.

2.2.4 MC/DC

A particularly demanded criterion in safety-critical systems, modified condition/decision coverage is
one of the rather robust criteria, as it demands the coverage tool to check for all the following;:

—_

. Every point of entry and exit in the program has been invoked at least once

2. Every condition in a decision in the program has taken all possible outcomes at least once
3. Every decision in the program has taken all possible outcomes at least once

4. Each condition in a decision has been shown to independently affect that decision’s outcome

In November 2022, the Geov community released a patch that added MC/DC [15]. Despite Whalen
et al.’s established methodology of extracting abstract-syntax-tree (AST) information and utilizing it to
construct the instrumentation [16], Geov uses an algorithm relying on the control-flow-graph (CFG). Our
work primarily utilises Gcov’s implementation of MC/DC, with awareness of a minor caveat regarding
the dependence on the CFG. The limitation is that both listing 2.5 and listing 2.6 produce the exact
same CFG:

if (a)

if (a && b && c) 2 if (b)
x = 1; 3 if (c)

4 x = 1;

Listing 2.5: and.cpp Listi 2.6: if
isting 2.6: ifs.cpp

As a result, branch coverage for both snippets would be identically reported, even though ideally
there should be differentiation since ‘and.cpp’ has one branch whereas ‘ifs.cpp’ has three. Additionally,
condition coverage would be impacted as ‘and.cpp’ has a single decision whereas ‘ifs.cpp’ has three. This
disparity becomes even more apparent when accounting for short-circuit behaviour, as the single decision
in ‘and.cpp’ will mask the remaining conditions once a single condition is found to be false. Additionally,
ternary operators (i.e. int x = a ? 0 : 1) occasionally introduce conditionals that are difficult to detect
in CFGs, as a result their avoidance is encouraged.

void test_decision() {
decision(true, true, false)
// Expected: 1
decision(true, false, false)
// Expected: 0

6 decision(false, true, false)

bool decision(bool a, bool b, bool c) { 7 // Expected: 0
return (a && b) || c; 8 decision(false, true, true)
} 9 // Expected: 1
0 }

1
Listing 2.7: Function to Test .
12| int main() {
1 test_decision();
14 return O;

Listing 2.8: Test Campaign

Figure 2.1: Achieving 100% MC/DC coverage for a simple function

10

CHAPTER 2. BACKGROUND

For clarity, a boolean decision such as if ((a || b) && c) , has three conditions (a, b, and c).
The four tests in Listing 2.8’s test campaign achieve 100% MC/DC by ensuring every individual condition
in the decision can independently affect its outcome.

The first test, decision(true, true, false) , returns true, showing that the outcome is true when
both a and b are true. The second test, decision(true, false, false) , demonstrates that by
setting b to false while keeping a as true and c¢ as false, the function’s outcome changes to false.
This change from the previous test case demonstrates that b can independently affect the outcome.
The third test, decision(false, true, false) , changes a to false while keeping b as true and
c as false (from the first test). The outcome of the function changes to false. This shows that the
mere change of a causes the decision’s outcome to change, demonstrating that a can independently
affect the decision’s outcome.

The final test, decision(false, true, true) ,sets c to true while keeping a and b as false. The
function’s outcome now changes to true, showing that c can independently affect the outcome.

These tests collectively prove that every condition in the decision (a && b) || ¢ can independently
affect the decision’s outcome, which achieves 100% MC/DC coverage.

2.2.5 Multiple Condition

An even more rigorous and exhaustive criterion exists in multiple condition coverage, which requires
every single combination of conditions inside each decision to be covered during testing.

As outlined by NASA’s Hayhurst, “In theory, multiple condition coverage is the most desirable structural
coverage measure; but, it is impractical for many cases. For a decision with n inputs, multiple condition
coverage requires 2" tests.” [17]

MC/DC aims to provide a practical alternative to multiple condition coverage, by keeping many of its
benefits but managing to require non-exponential growth in test cases. This is due, in part, to MC/DC’s
capability of ensuring each condition independently affects the decision’s outcome.

Along with statement and branch coverage, we maintain particular focus on MC/DC for reasons men-
tioned in section 2.3. There are other criteria such as parameter-value (PVC), linear code sequence and
jump (LCSAJ) and data-flow coverage, but they are out of our research’s scope.

2.3 Safety-Critical Systems

This section demonstrates the cruciality of MC/DC in safety-critical systems as motivation for its inclu-
sion as a key criterion in our research. There are several key standards that deem MC/DC a necessity and
require its inclusion amongst considered code coverage criteria during the development of safety-critical
systems, such as ISO 26262 [18], DO-178C [19], EN 50657 [20] and IEC 61508 [21].

2.3.1 Automotive Systems

ISO 26262, titled “Road vehicles — Functional safety”, is a framework that outlines a series of standards
for electrical /electronic systems installed in road vehicles. The entirety of development activities taking
place for such systems must abide by the functional safety objectives laid out by ISO 26262. To classify
risks, the ISO provides an automotive-specific risk metric to rank the integrity levels, namely “Automotive
Safety Integrity Levels” (ASIL). This metric has four stages in incremental order of risk, labelled ‘A’
to ‘D’. For the highest integrity level designation reserved for high-risk components, MC/DC is highly
recommended at the software unit level. As witnessed in the following table where “4++" indicates that
the method is highly recommended for the identified ASIL.

Methods ASIL
A B C D
la | Statement Coverage 4 | 4+ |+ +
1b | Branch Coverage + | 4+ | |+
lc | MC/DC (Modified Condition/Decision Coverage) + + + | ++

Table 2.1: Structural coverage criteria at the software unit level for ISO 26262 [18]

11

CHAPTER 2. BACKGROUND

2.3.2 Aviation Systems

DO-178C, titled “Software Considerations in Airborne Systems and Equipment Certification”, is a pro-
cess standard that oversees the software lifecycle activities taking place in software systems responsible
for airborne applications. Meeting the requirements set forth by the document is a necessity for software-
based aerospace systems to be approved by certification authorities such as the FAA [22]. The standard
particularly outlines safety considerations that must be respected during the integral process of software
verification, for which MC/DC is strictly required. There are five Software Levels that are determined
during the safety assessment process, for which MC/DC is mandatory within components in possession
of the highest risk level (A - Catastrophic).

Level Impact Coverage Criterion
A Catastrophic MC/DC, Branch, Statement
B Hazardous/Severe Branch, Statement
C Majorsystems Statement
D Minor -
E No Effect -

Table 2.2: Mandatory structural coverage criteria for each Software Level in DO-178C [19]

2.3.3 Railway Systems

EN 50657, titled “Railway Applications - Software Onboard Rolling Stock”, is a standard specifying the
process and requirements necessary to develop software for programmable electronic systems onboard
rail vehicles. It aims to oversee all software components of rolling stock applications, as well as the inter-
actions between such software and the system on which it’s built. There are four safety integrity levels
(SIL) for software components, ranked in ascending degree of critical risk. As far as test coverage crite-
ria are concerned, MC/DC is highly recommended (HR) for the most critical of integration levels (SIL 4).

Coverage Criterion | SIL 1 | SIL 2 | SIL 3 | SIL 4
Statement HR HR HR HR
Branch R R HR HR
MC/DC R R HR HR

Table 2.3: Structural coverage criteria for each Safety Integration Level in EN 50657 [20]

2.3.4 Programmable-Electronic Systems

IEC 61508, titled “Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related
Systems”, is a basic functional international standard applicable for all types of safety-critical systems.
Through two principles, the standard aims to ensure every safety-related system either works as intended
or fails predictably in a safe way. The first principle entails a ‘safety life cycle’, which is founded on
best practices, to acknowledge and mitigate design errors as soon as possible. On the other hand, the
second principle promotes a probabilistic failure approach to handle the safety aspect of device failures.
The standard assigns a risk assessment metric, labelled ‘safety integrity level’ (SIL) to different software
functions within programmable-electronic systems. Several industry-specific variants of IEC 61508 exist
for automotive, rail, power plant, machinery and process industries. Unit testing is integral for software
produced in accordance with the standard, and MC/DC is highly-recommended (HR) for the highest
integrity level (SIL 4).

12

CHAPTER 2. BACKGROUND

Method SIL 1 | SIL 2 | SIL 3 | SIL 4
7a | Function Coverage HR HR HR HR
7b | Statement Coverage R HR HR HR
Tc Branch Coverage R R HR HR
7d MC/DC R R R HR

Table 2.4: Structural coverage metrics for each Safety Integration Level in IEC 61508 [21]

2.4 MC/DC Cruciality

As deducible from the requirements set forth by various international standards for safety-critical systems,
MC/DC is of great importance, particularly when software components possess a high degree of risk.
Satisfying the criterion on its own, by definition, implies satisfying both statement and branch coverage.
This is due to the fact that MC/DC has four clauses necessary for its satisfaction as showcased in
subsection 2.2.4, with clause (1) satisfying statement coverage and clause (3) satisfying branch coverage.
For the scope of this research, we will extensively make use of both statement and MC/DC metrics
during our work with code coverage.

Our motivation for strictly abiding by both of the aforementioned criteria stems from the usefulness of
statement coverage in assessing fundamental coverage behaviour for statements of interest, and MC/DC’s
necessity in achieving the robust level of code coverage set forth by safety-critical standards.

2.5 Source-code vs. Byte-code Instrumentation

The instrumentation of code for the purpose of displaying coverage metrics can be performed at two
levels, either the source-code or byte-code. We have witnessed the former in depth throughout the
proceedings of this research, where global data structures were embedded within the original source-
code to keep track of execution rates of coverage criteria throughout the testing phase. This approach
is helpful in comprehending the logic behind reported metrics, but augments the source-code size and
may introduce new bugs that have a detrimental effect on the original source-code. On the other hand,
byte-code instrumentation does not have access to the source-code and, as a result, cannot modify it.
The additional structures to track metrics now have to be instrumented to the compiled bytecode, a
flexible and cost-effective method that requires thorough knowledge of the programming language to
comprehend the coverage results clearly.

It has been found, however, that byte-code instrumentation is not a valid technique to measure branch
coverage [23].

As a result of our exclusive focus on C++, we are primarily concerned with source-code instrumentation,
since C++ usually compiles down to the machine code directly [24]. Byte-code instrumentation is rather
viable in Java, as there is a standard Java API for bytecode instrumentation defined in the package
‘java.lang.instrument’. The package can be used to instrument Java classes’ bytecode before they are
loaded by the Java virtual machine [25].

2.6 Ambiguous Scenarios

We refer to statements that do not have a single concrete interpretation regarding their coverage status, as
well as statements having the same functionality yet treated differently by a coverage tool, as ‘ambiguous’.
Preprocessor directives, inline and template functions, macros, exception handling and object-oriented
features are among the ambiguous cases thoroughly discussed in Chapter 4. Discrepancies detected in
Gceov’s handling of identically functioning statements are also discussed, which is alarming due to Gcov
being an extremely popular open-source test coverage tool that is widely in use [26]. Our goal is to
provide a robust framework that can serve as a guideline whenever such inconsistencies are found, in
an attempt to standardize the output of coverage tools moving forward. The programming languages
currently most popular among software engineers for writing safety critical applications are C and, more
recently, C++ [27]. For safety-critical engineers to determine the effectiveness of their test suite, they
must utilize code coverage tools. Ideally, there should be minimal ambiguity in order to facilitate an
enhanced development process.

13

CHAPTER 2. BACKGROUND

2.7 Compile-time vs. Run-time Coverage

Following the development of code files yet prior to running the program once, running a code coverage
tool would constitute static code analysis and compile-time coverage would be achieved. This process
may be helpful in detecting syntax errors, unreachable code segments, unused variables...etc. On the
other hand, once a program is run once (ideally many times by a test suite), running a code coverage
tool would constitute dynamic code analysis and run-time coverage would be achieved [28]. It is this
type of analysis that’s useful for quality engineers or software testers, as they can write more impactful
tests to increase coverage.

Throughout Chapter 3, the requirements outlined for various coverage criteria make use of ‘runtime’ and
‘compile-time’ to differentiate between the different phases during which coverage requirements must
apply. Our developed test-suite utilises run-time coverage, as the test units are constructed by reflecting
the coverage metrics of a single parameter-less run (more in Chapter 4).

14

Chapter 3

Coverage Tool Requirements

A primary objective, prior to designing the test suite, is acknowledging which set of concrete requirements
are necessary for any coverage tool’s valid functioning. Given the vast array of programming languages
and domains within which coverage tools are utilised, our requirements are primarily geared towards
C++ and safety-critical applications. As such, we formulated requirements for statement, branch and
MC/DC criteria.

As opposed to the conventional method of eliciting software requirements on the foundation of stake-
holder demands, we are instead composing requirements based on the demands of international standards
of safety-critical systems. To the best of our ability, we have abided by the quality criteria of a good
requirement specification for each of the requirements in our set. These quality criteria include correct-
ness, completeness, unambiguity, consistency and traceability [29]. The purpose of outlining such robust
requirements is to provide a guideline for code coverage tools to adhere to the expectations laid out by
international standards, particularly ISO 26262 and those discussed in section 2.3.

In accordance with IEEE 830-1998 [30], each requirement was deemed ‘correct’ by having directly reflect
a concrete expectation stated by the standards. In a similar sense, each requirement was ‘complete’ by
including all the expectation’s non-trivial aspects, ‘unambiguous’ by being as atomic as possible, ‘con-
sistent’ by possessing no conflicts with other requirements in the same set and ‘traceable’ in the sense
that there is a direct mapping between each requirement and the designated expectation.

The formulated requirements form the backbone of our implemented test suite, as every outlined re-
quirement has its own directory within the test suite (rightmost column in table 3.1). For each directory,
numerous test units are expected to assess the conformity of coverage tools to the examined requirement.

15

CHAPTER 3. COVERAGE TOOL REQUIREMENTS

3.1 Statement Coverage Requirements

ID

Requirement

Definition

Test Suite Path

Statement - 1

The tool shall
reliably display
coverage for
executable
source-code
statements that
underwent testing

For every source-code

statement that is
intended to undergo
testing and indeed
underwent testing, the
tool shall communicate
that this statement is
tested at runtime and
display the correct
amount of times it was
tested

/test_suite/statement/
covered /unitX.cpp

Statement - 2

The tool shall
reliably display
coverage for
executable
source-code
statements that did
not undergo testing

For every source code
statement that is
intended to undergo
testing but wasn’t tested,
the tool shall
communicate that this
statement still needs
testing at runtime

/test_suite/statement/
not_covered/unitX.cpp

Statement - 3

The tool shall
reliably display
coverage for
non-executable
source-code
statements

For every non-executable
(i.e. can never undergo
testing) source code
statement, the tool shall
unambiguously declare
that the statement does
not require testing

/test_suite/statement /
not_executable/unitX.cpp

Statement - 4

The tool shall
reliably display
coverage of

compile-time
evaluated code
that is present at
the source-level but
not in the binary

For every source-code
statement intended for
evaluation at
compile-time and was
indeed evaluated at
compile time, the tool
shall unambiguously
declare the statement
does not need

compile-time testing

/test_suite/statement/
compile_time_eval /unitX.cpp

Statement - 5

The tool shall
reliably display
coverage of

compile-time
unevaluated code
that is present at
the source-level but
not in the binary

For every source-code
statement intended for
evaluation at
compile-time but was not
evaluated at
compile-time, the tool
shall unambiguously
declare the statement still
requires compile-time

testing

/test_suite/statement/
compile_time_noneval/

unitX.cpp

Table 3.1: Coverage Tool Requirements (Statement Coverage)

16

CHAPTER 3. COVERAGE TOOL REQUIREMENTS

Statement - 1 ensures source-code statements that should be executed during the testing phase,
and were indeed executed, have their coverage status reliably displayed by the tool. As for the
exact same statements that were not executed during the testing phase, the tool should report that
they still require testing as per Statement - 2. For statements that are non-executable by nature
(comments, declarations, definitions...etc.), the tool should report that there is no testing required for
them in line with Statement - 3. The final two requirements concern source-code statements that are
not present in the binary code produced post-compilation, these are evaluated during compilation by the
compiler before being run. Statement - 4 ensures that such statements, when successfully evaluated
at compile-time and prior to any runs taking place, are reported as ‘not in need of compile-time
testing’ by the tool. On the other hand, Statement 5 covers the case where such statements are not
evaluated at compile-time (e.g. needing values unknown at compile-time, using non-literal types,
stalled by compiler limitations...etc.), ensuring the tool reflects they still require compile-time testing.

3.2 Branch Coverage Requirements

ID Requirement Definition Test Suite Path
The tool shall For every statement
evaluate whether containing a boolean
Branch - 1 statements decision, the tool shall /test_suite/branch/
containing boolean state if the decision true/unitX.cpp
decisions are outcome was evaluated to
evaluated to ‘true’ ‘true’
The tool shall For every statement
evaluate whether containing a boolean
Branch - 2 statements decision, the tool shall /test_suite/branch/
containing boolean state if the decision false/unitX.cpp
decisions are outcome was evaluated to
evaluated to ‘false’ ‘false’

Table 3.2: Coverage Tool Requirements (Branch Coverage)

In an attempt to establish branch coverage, the tool should traverse each flow control structure and de-
termine the extent of sufficient testing that took place, demonstrated by the evaluation of each structure
to both ‘true’ and ‘false’.

void foo(int x, int y) {

if (x > y) { - 0 <
std::cout << "x > y" << std::endl; ‘| tnt main)

} else if (x < y) { 2 foo(2, 1); // Testing when x > y
std::cout << "y > x" << std::endl; 3 foo(1, 2); // Testing when x < y

} else t. N ' ! foo(1, 1); // Testing when x ==y
std::cout << "x == Y" << std::endl; 5) return 0;

} I

Listing 3.2: Test Campaign

Listing 3.1: Simple C++ function

Figure 3.1: Achievement of 100% branch coverage for a simple C++ function.

The branch coverage requirements do not take into account the evaluation of every sub-condition in a
complex decision statement. Instead, these duties are delegated to a decision coverage metric generally,
and to MC/DC in our case specifically.

17

CHAPTER 3. COVERAGE TOOL REQUIREMENTS

3.3 MC/DC Coverage Requirements

ID Requirement Definition Test Suite Path
The tool shall For every statement
correctly display containing a boolean
decision, the tool shall /test_suite/medc/
MC/DC -1 how many .
. . correctly state how many cond_count/unitX.cpp
conditions are in a o o
.. conditions are within the
boolean decision .
decision
The tool shall For every statement
correctly display if containing a boolean
each condition in a decision, the tool shall /test_suite/medc/
MC/DC - 2
decision was state if every condition cond_true/unitX.cpp
evaluated to within the decision was
boolean ‘true’ evaluated to ‘true’
The tool shall For every statement
correctly display if containing a boolean
MC/DC - 3 each condition in a decision, the tool shall /test_suite/medc/
decision was state if every condition cond_false/unitX.cpp
evaluated to within the decision was
boolean ‘false’ evaluated to ‘false’
For every statement
The tool shall cor'lt'alnlng a boolean
. . decision, the tool shall
correctly display if . .
e state if every condition
each condition in a o .
decision was within the decision was /test_suite/medc/
MC/DC - 4 independently capable of . .
capable of . e cond-indep/unitX.cpp
. affecting the decision’s
independently .
affecting the outcome by altering its
.. state whilst the rest of
decision outcome . o
the conditions maintain
their state

Table 3.3: Coverage Tool Requirements (MC/DC Coverage)

The entirety of requirements for MC/DC operate on source-code boolean decisions, for which the num-
ber of conditions should be reported, in addition to each condition’s evaluation to ‘true’ and ‘false’, and
whether it is capable of independently affecting the outcome.

Within ISO 26262-8:2018 - 11.1, the objectives of employing confidence in the use of software tools
is to [18]:
e provide criteria to determine the required level of confidence in a software tool when applicable
e provide means for the qualification of the software tool when applicable, in order to create evidence
that the software tool is suitable to be used to support the activities or tasks required by the ISO
26262 series of standards (i.e. the user can rely on the correct functioning of a software tool for
those activities or tasks required by the ISO 26262 series of standards).

In pursuit of the initial objective, and in line with our findings in 2.3, we are confident in the provided
set of requirements showcased throughout Chapter 3 to effectively evaluate the completeness of C++
source code testing within safety-critical systems and applications. After implementing the test suite
modelled after the formulated requirements, we fulfil our final objective by creating a Python tool that
acts as a qualification kit.

18

Chapter 4

Test Suite Design

Throughout this chapter, we discuss how we implement a test suite based on the requirements outlined
in Chapter 3.

4.1 Coverage Files

In order for any code coverage tool to have its capabilities assessed, it must reliably produce correct
output that conforms with test units. A ‘test unit’ is simply a .cpp file that has been modified to
showcase its expected coverage information. Once we determine whether a coverage tool produces the
exact same ‘test unit’, we can assess its quality. To facilitate such comparisons, we require a standard
format to display the coverage metrics of interest, a shortcut method to facilitate unit production and a
uniform pattern of program execution prior to deducing the coverage metrics.

4.1.1 Standard Format

Firstly, we require a standard structure for relaying coverage information of C++ files, to maintain con-
sistency. We determine an insightful, readable and modifiable format is creating a copy of the original
.cpp file, with the coverage information displayed as a comment for each line on a right-hand-aligned
segment. The samples shown mainly showcase statement and MC/DC coverage for conciseness and sim-
plicity, omitting branch coverage from display since it is a subset of MC/DC. Any of the code coverage
criteria presented in section 2.2 can easily be integrated in the format’s comment segment, given the
tool-under test is capable of providing it. The adopted format provided emphasises criteria responsible
for safety-critical systems.

argc,
argc Bebe

Figure 4.1: Sample .cpp file

Figure 4.2: Sample file formatted post-coverage

19

CHAPTER 4. TEST SUITE DESIGN

4.1.2 Standard Execution Pattern

There are countless stages at which coverage information can be obtained, such as inbetween compiling
and running (static code analysis in section 2.7), post-compilation following a single run, following two
runs, following three runs...etc. In addition, each run post-compilation can be parameterized or non-
parameterized. We illustrate this concept starting with figure 4.3:

nt main(int ar char *argv[]) {
f(argc == 1)

:atoi(argv[1]);

Iterati ; d++)
endl ;

return @;

Figure 4.3: Sample .cpp file

Running this file’s executable without any parameters (), results in the coverage information
shown in figure 4.4.

$ cat unitl-gen.cpp

#include <iostream>

N

time
time MC/DC: (1/2) NCT:[] NCF:[0]
time
time

Covered : 1

Covered : 1

int main(int argc, char *argv[]) { 1
1
1
1

if(argc) 1
std: r << "Parameterless run" << std::endl;
return 0;

Covered : 1
Covered : 1

Iterations = std::atoi(argv[1]); Not Covered

o~k w

(int 1 = Iterations; i++) { 11: Not Covered MC/DC: (©/2) NCT:[0] NCF:[0]
std::cou << std::endl; 12: Not Covered

return 0; 15: Not Covered

Figure 4.4: Sample after parameterless run

If we then perform a parameterized run (in this case), the coverage results are as shown
in figure 4.5

$ cat unitl-gen.c
(R

#include <iostream=

[N

Covered :

Covered : 2 MC/DC: (2/2) NCT:[] NCF:[]
Covered : 1

Covered : 1

int main(int argc, char *argv[]) {
if(argc == 1
std::cerr 'Parameterless run" << std::endl;
return 0;

Iterations = std::atoi(argv[1])};

Vo~ bk Ww

Covered : MC/DC: (2/2) NCT:[] NCF:[]
Covered :

(int i i Iterations; i++) {
std: :cout << std::endl;

return 0; Covered :

(
(
¢
(
¢
(
(R
(Covered :
¢
(
¢
(
(
¢

Figure 4.5: Sample after parameterized run

20

CHAPTER 4. TEST SUITE DESIGN

If we perform yet another parameterized run (JyANNARA). we end up with figure 4.6.

$ cat unitl-gen.c

#include <iostream>

[y

Covered :

Covered : MC/DC: (2/2) NCT:[] NCF:[]
Covered : 1

Covered : 1

int main(int argc, char *argv[]) {
if(argec == 1) {
std::cerr << "Parameterless run" << std::endl;
return 0;
}

int Iterations = std::atoi(argv[1]); Covered : :

[eI« NV, RN Y]

Covered : 8 MC/DC: (2/2) NCT:[] NCF:[]
Covered :

for (int 1 = Iterations; i++) {
std::c << std::endl;

.

}

return 0; Covered : :

(
(
(
(
¢
(
(
(
(
(
(
(
(
(
(

Figure 4.6: Sample after another parameterized run

As demonstrated, the coverage information displayed for run-time coverage varies according to the
file’s execution pattern. Consequently, there needs to be consistency amongst the execution patterns of
all files’ coverage information retrieved from coverage tools, as comparing the coverage information from
a parameterless run would differ from a parametrized run and two parameterless runs and so on. As a
result, we have maintained a single parameterless run for coverage information in all the test units
within our test suite.

4.1.3 Coverage File Generation

The purpose of all test units is to display the expected coverage information of .cpp files following a single
parameterless run. For any .cpp file, if a code coverage tool produces the same output following a single
non-parameterized run, it is considered compliant.

Given the desired format in subsection 4.1.1, it would be an incredibly unrealistic task to annotate
each source code line manually with its coverage information. To overcome this, we utilise Gcov as a
template to initially parse its output into our desired format, and then perform any necessary further
changes before integrating the file into the test suite. This allows us to quickly achieve a generated file
with Gcov’s coverage that adheres to the desired format by virtue of a Python code file. Following this,
amendments to the file are performed before it is deemed correct and joins the suite. To recap, a coverage
file is a modified .cpp unit that shows the coverage criteria status commented for each line, and once it
is deemed correct we label it a ‘test unit’.

4.1.4 Coverage Object Generation

In addition to generating coverage files, we also capitalize on the rapidness and powerfulness of Python’s
object-oriented programming [31] by creating coverage objects. Each coverage object represents a ‘test
unit’ file, and can be instantiated from JSON, XML or YML. The Coverage class has a ‘lines’ array,
populated with CodeLine objects, which keep track of each file-line’s content and coverage status. The
CodeLine class defines variables to keep track of the line number along with its coverage status and
MC/DC metrics. It’s this array, in fact, that undergoes comparison for quicker performance. When
assessing the conformity of a code coverage tool’s output to our ezpected test unit, if the two files have
the exact same array of CodeLines then this signifies they have the exact same coverage status for each
source-code line, and as a result are deemed equal.

4.2 Test Suite Structure

The test suite is structured as shown in figure 4.7, with the bottom-level directories populated with
numbered test units starting from unitl.cpp. The unit tests reflect the necessary requirement they
fulfil, indicated by the directory’s name. In addition to matching the requirements outlined in Chapter 3,
the test units additionally contained cases of ambiguous scenarios (discussed in Chapter 7) A sample
from each bottom-level directory is shown along with what’s expected of the coverage tool, starting with
4.2.1.

21

CHAPTER 4. TEST SUITE DESIGN

test_suite

branch

statement mcde

¥ v ¥ v
"
not_covered not_exegcutable compile_time_eval compile_time_noneval cond |count cound_true cound_false cond_inde;

e .
E E B B E EEE

unit#.cpp unit#.cpp uniti.cpp uniti.cpp unit#.cpp unit#.cpp unit#.cpp unit#.cpp unit#.cpp unit#.cpp

Figure 4.7: Suite Directory Structure

4.2.1 Covered Statements

A source-code statement must be declared ‘covered’ if it is executable and has been tested. An exe-
cutable statement is one that performs some action when the source program is run, such as assignment
operations, arithmetic operations, control-flow statements, function calls and input/output statements
[32]. Once the program’s statement is tested during the testing process, the tool must signal it has been
‘covered’ and display the correct amount of times it was ‘covered’.

1| int main () {

int x = 2;

std::cout << "Number is: " << x << std::endl;
4 return O0;

0N

Listing 4.1: Covered

Following a single parameterless run, the tool should display ‘covered’ once (1) for each statement in
listing 4.1 except the closing bracket since it’s non-executable.

4.2.2 Not Covered Statements

A source-code statement must be declared ‘not covered’ if it is executable and hasn’t been tested. If an
executable statement did not undergo testing following the testing process, the tool must signal that it
is an ‘uncovered statement’ that still requires testing.

1| int main() {

2 int x = 2;

3 if (x > 3) {

4 std::cout << "Number is greater than 3." << std::endl;
}

6 return O;

Listing 4.2: Not Covered

In listing 4.2, each line should demonstrate that it’s covered once (1) except the line inside the ‘if’
condition and the closing brackets. Instead, the closing brackets are signalled as non-executable, whereas
the std :: cout << " Number is greater than 3. " << std :: endl ; line should be marked
as ‘not covered’ (0).

22

CHAPTER 4. TEST SUITE DESIGN

4.2.3 Non-Executable Statements

A source-code statement must be declared ‘not executable’ if that is indeed the case. In the context
of C++, such statements are in the form of preprocessor directives (#include), comments, function
prototypes, and declaration statements without initialization.

#include <iostream>

3| // Printing a simple message to screen
.| void printMessage ();

6| int main() {
7 printMessage () ;
8 return O;

ol

11| void printMessage () {
12 std::cout << "Hello, World!" << std::endl;
13 }

Listing 4.3: Not Executable

In listing 4.3, the preprocessor directive to include a library header on the first line, comment on line 3,
function prototype declaration on line 4, main function declaration on line 6, closing bracket on line 9,
function declaration on line 11 and closing bracket on line 13 are all non-executable lines of code. Ideally,
all the listing’s lines are to be reported as ‘non-executable’ (-) except for lines 7,8 and 12. Function calls,
return and output statements that undergo execution should be reported as ’covered’ with the correct
amount of times they were covered displayed.

4.2.4 Compile-time Evaluated Statements

A source-code statement that is intended (by the programming language’s description) to be evaluated
at compile-time, and does indeed undergo compile-time evaluation, should be reported as a ‘compile-time
evaluated statement’.

1| constexpr int getNumber () { return 5; }

3/ int main () {
1 int a = getNumber ();
return O;

Listing 4.4: Compile-time Evaluated

In listing 4.4, the constant-expression function on line 1 along with its call on line 4 are compile-time
statements that underwent evaluation, therefore they should be reported as ‘compile-time evaluated’
alongside their standard coverage status.

4.2.5 Compile-time Unevaluated Statements

A source-code statement that is intended (by the programming language’s description) to be evaluated
at compile-time, but does not undergo compile-time evaluation, should be additionally reported as a
‘compile-time unevaluated statement’.

23

CHAPTER 4. TEST SUITE DESIGN

#include<iostream>

w W

constexpr int doubleValue (int val) {
4 return val * 2;

50

7l int main() {

8 int x = 10;

9 constexpr int y = doubleValue (5);

11 int z = doubleValue(x);

13 std::cout << "y: " << y << ", z: " << z << std::endl;
14 return O;

Listing 4.5: Compile-time Unevaluated

In listing 4.5, there are three statements intended for compile-time evaluation. The initial is the constant-
expression function declaration on line 3, which does indeed undergo evaluation as the constant-expression
function is called later on at line 9. As for the second and third instances, on lines 9 and 11, there’s a
difference. For constexpr int y = doubleValue(5) ;, the y variable is indeed declared with ‘constexpr’
and will be evaluated at compile-time with a value of 10. As for int z = doubleValue(x);, the x
variable is not a ‘constexpr’ as witnessed on line 8, and therefore the value of the z variable is only
evaluated at run-time. As a result, line 11 should ideally be reported as ‘compile-time unevaluated’.

4.2.6 Branching

A source-code statement containing a boolean decision, at which point a change in control-flow is to
ensue, should have the correct degree of branching it had undertaken displayed.

int main() {
int a = 2;
if (a > 0 && a < 10) {
4 std::cout << "Number between O and 10" << std::endl;

}

6 return O0;

w W

Listing 4.6: Branching

In listing 4.6, the boolean decision if (a > 0 && a < 10) is only evaluated to ‘true’ by virtue of the
value assigned to the a variable in the source-code. The statement should ideally be reported as having
1/2 branching outcomes covered. If, during the course of the testing phase, a value lower than 1 or
higher than 9 was assigned to a, then the statement should showcase full (2/2) branching coverage.

4.2.7 Condition Count

A source-code statement containing a boolean decision should have its amount of conditions correctly
displayed.

int main() {

2 int a(3), b(5), c(7);

3 if ((a > 0 & b < 4) or (c < 10)){

4 std::cout << "Number meets the conditions." << std::endl;
}

6 return O;

Listing 4.7: Condition Count

In listing 4.7, there are three conditions (namely a, b and c) as part of the boolean decision on line 3.
Those would ideally be correctly reflected by the code coverage tool. C++ specifies or as an alternative
spelling for the primary OR operator ‘||, as defined by ISO 14882:2003 Standard 2.5/2 [33].

24

CHAPTER 4. TEST SUITE DESIGN

4.2.8 Condition Evaluation

The second clause of MC/DC coverage (2.2.4) entails that ‘every condition in a decision in the program
has taken all possible outcomes at least once’. As a result, each of the conditions correctly identified by
the coverage tool in 4.2.7 should have the extent of their outcomes taken correctly reported.

int main() {

2 int x(2), y(11), z(4);

3 if ((x > 1 && y < 9) or (z < 5)){

4 std::cout << "Number meets the conditions." << std::endl;
¥

6 return O0;

-

Listing 4.8: Condition Evaluation

In listing 4.8, each of the three conditions in the boolean expression should be evaluated to both true
and false, for a total of six evaluations. As things currently stand, following a single parameterless run
where the variables assume the values assigned to them on line 2, x > 1 has been evaluated to true but
not false, y < 9 has been evaluated to false but not true, and z < 5 has been evaluated to true but not
false. This results in a total of 3/6 condition evaluations expected to be reported by the code coverage
tool.

4.2.9 Condition Independence (MC/DC)

The fourth clause of MC/DC coverage (2.2.4) entails that ‘each condition in a decision has been shown
to independently affect that decision’s outcome’. For this, the tool should ideally be capable of detailing
whether each condition has been demonstrated to independently affect a decision’s outcome throughout
the course of testing.

1| bool inRange(int a, int x, int b) {
2 return (a <= x && x <= b);

3| }

Listing 4.9: Condition Independence

In listing 4.9, and following a single parameterless run, the coverage tool shall ideally signal the inde-
pendence of each condition (a, x and b) as unmet. There are at least four test cases required for full
independence of each condition to be guaranteed. One possible set of such four cases would be the
following:

1. inRange(5, 7, 10) (decision: true)
2. inRange(8, 7, 10) (decision: false)
3. inRange(5, 11, 10) (decision: false)
4. inRange(5, 7, 6) (decision: false)

Changing the value of condition a while keeping other conditions the same between tests 1 and 2 has
changed the outcome from true to false, demonstrating the independence of a. Similarly, the change
of only x between tests 1 and 3 being capable of altering the outcome guarantees its independence. The
same applies to tests 1 and 4 for b, where the decision’s outcome depends entirely on it. Had these four
tests been a part of the test campaign, and the coverage tool was subsequently run, it would ideally
report the MC/DC independence of 3/3 conditions.

It should be noted that a code coverage tool is primarily diagnostic in nature. Its main function is
not to independently strive for 100% MC/DC (or any other criterion) coverage, but to accurately report
the current state of coverage achieved by existing tests. The task of increasing coverage rests with the
quality engineer, who ideally uses the coverage tool as a reliable resource to assess and enhance the state
of test coverage.

25

Chapter 5

Verification Tool Development

5.1 Object-Oriented Approach

Following the declaration of requirements and the development of a test suite to cover them, it’s desired to
develop a tool that is capable of verifying the conformity of various code coverage tools to the established
findings. In accordance with the standard format showcased in 4.1.1, we were able to generate coverage
files (4.1.3) and objects(4.1.4) from .cpp files. A Coverage object is an instance of the Coverage class,
which only maintains an array of CodeLines. Each CodeLine object contains the necessary information
pertaining to each source-code line, such as its number, coverage and (if need be) MC/DC status along
with lists of conditions not covered for ‘true’ [nct] and ‘false’ [ncf]. The CodeLine class has the structure
shown in figure 5.1.

CodelLine

+line_number: int
+coverage_info: str
+mc_dc: Any

+nct: List[int]

+ncf: List[int]

+__init_ (line_number: int,
coverage_info: str,

me_dc: Any,

nct: List[int],

ncf: List[int])

Figure 5.1: CodeLine Class Structure

A single Coverage object, like a Coverage file, is intended to represent the coverage status of an entire
.cpp file on a line-by-line basis. The main benefit here from incorporating object-oriented programming
is the much faster speed at which comparisons can take place between files, especially in large test suites.
Both formats exist to fulfil separate needs, files to allow a human-readable method of assessing the cov-
erage information and objects to rapidly compare between files.

By using Gceov’s output as a template, we generate Coverage files with each source-code line annotated
with its appropriate coverage metrics. A manual review ensues, where necessary changes (whether due
to tool shortcomings or cases of ambiguity) are then made. Once each line is assessed to possess its
expected coverage status alongside it, the Coverage file is labelled a ‘test unit’ and is added to the test
suite. As a result, each bottom-level directory within the structure shown in 4.7 essentially possesses the
original .cpp file along with our generated test unit.

Once the test suite is populated with units to a satisfiable extent, all the test units are converted to
Coverage objects by virtue of a Pyth0n3 method7 ‘~ ge.create_Coverage_object_from_Coverage_file(test_unit) §
This enables us to obtain a collection of .cpp files and their expected coverage information in the form of
objects, in order to be compared with generated objects from the tool-under-test’s output. To achieve
this, we provide the same .cpp files to the tool-under-test, and convert its output into Coverage objects.
To that extent, we have developed ‘CIeatE_[:O"u"EI-igE_IZijE"C't_fIEII'I'I_tLIt_CIUtlet[f-::ill'mat, cpp_file) , which takes in
the tool-under-test’s coverage output and returns a Coverage object.

26

CHAPTER 5. VERIFICATION TOOL DEVELOPMENT

The formats supported include JSON, XML and YML; They do, however, require slight modifications
to fit each tool’s unique description of parameters (i.e. ‘lineno’ vs. ‘linenumber’, ‘condition_cov’ vs.
‘me/dc’...etc.)

Ideally, this would be automated (discussed later in Chapter 9).

5.2 Test Driver Development

We finally develop a test driver module, which is run once we have two sets of Coverage objects taken
from the two modules shown above. The test driver compares Coverage objects of our test units to the
respective Coverage objects of the tool-under-test’s output for each .cpp file, and generates a report dis-
playing which objects matched and which mismatched. For mismatching objects, the exact mismatching
line number(s) is showcased along with its misaligned coverage information between both objects.

Figure 5.2: Test Driver Report Sample

27

CHAPTER 5. VERIFICATION TOOL DEVELOPMENT

5.3 Regular Expression Utility

Figure 5.2 showcases a report sample by the test driver module, where there are three Coverage objects
found to possess coverage information mismatches in varying categories. We have made extensive use of
regular expressions to aid us in the detection and assessment of coverage information when creating
the Coverage objects, as they are tasked with extracting the values from the .cpp files.

To illustrate, here is a test unit file line that does not possess any boolean decisions, and thus is exempt
from MC/DC metrics:

<< std::endl;

To fully encapsulate all relevant information in this line, we need a regular expression that can allocate
and store the values for the line number and its coverage information.
To achieve this, we construct the following regular expression:

line_no_mcdc = re.search(

, line)

Through Python3’s re standard library module for regular expressions, we can capture the values of
certain parts inside a regular expression by using brackets (), to store as variables and use later on.
The expression works to capture the information on a non-boolean-decision line as follows:

1. .%// : “* matches any character 0 or more times, immediately followed by the literal ‘//’ that
signals a comment in C++.

2. \s* : This part matches any whitespace character 0 or more times.

3. (\d+)\s*:\s* : Capture the value of one or more digits, signalling the line number. Then, allow
for any whitespaces before and after the literal colon ‘:” that follows the line number.

4. \C(MIHN) \(C and ‘\)’ match the literal parentheses characters ‘(’ and). The ‘([*)]+)’ part
allows for the capturing of all coverage information prior to the closing bracket.

5. .* : Match any character that may follow the closing bracket. It’s used as a safeguard to avoid
unnecessary expression mismatches due to accidental additions.

To illustrate, these are the targeted parts on a sample line, following the enumeration above:

For source-code lines containing a boolean decision, additional metrics to keep track of MC/DC are
required. These lines are annotated in the following form:

&8 <=4

argc

The value of MC/DC in the sample line above, (1/6), represents the number of conditions tested for
all possible outcomes. As the state of testing stands, the statement’s boolean decision’s three conditions
have taken one out of six possible outcomes. The NCT list then demonstrates which conditions have
not been covered for the ‘true’ outcome, starting at 0. Thus, we can deduce all three conditions have not
been covered for ‘true’. From the NCF list, we deduce that only the first condition has been covered
for the ‘false’ outcome.

To account for the additional metrics, we construct the following regular expression:

line_mcdc = re.search(

*', line)

28

CHAPTER 5. VERIFICATION TOOL DEVELOPMENT

The regular expression is the exact same as the one utilised for source-code lines without a boolean
decision, with the addition of the following new segments:

6. \s*MC/DC:\s* : Match any whitespace prior and following the literal ‘MC/DC:’.
7. \(([")1+$)\) : Capture all MC/DC condition information prior to the closing bracket.
8. \s*NCT:\s* : Match any whitespace prior and following the literal ‘NCT:’, which is a number list
representing the conditions not covered for the ‘true’ outcome.
9. \[C["11%)\] : \[" and ‘\]’ match the literal square bracket characters ‘" and ‘|’. This captures
the ‘true’ numbered list.
10. \s*NCF:\s* : Match any whitespace prior and following the literal ‘NCF:’, which is a number list
representing the conditions not covered for the ‘false’ outcome.
11. \LCL™118)\] : 4\[and ‘\]’ match the literal square bracket characters ‘|’ and ‘. This captures
the ‘false’ numbered list.
12. .*x : Match any character that may follow, used as a safeguard to avoid unnecessary expression
mismatches due to accidental additions.

To illustrate, these are the targeted parts on a sample line, following the enumeration above:

i < Iterations; i++

By virtue of both these regular expressions, we ensure that the appropriate coverage information is
captured and utilised during the construction of Coverage objects by the methods seen in section 5.1.

29

Chapter 6

Results

Throughout this chapter, we demonstrate the outcomes achieved as a result of our efforts.

The main objectives completed are in the form of eliciting concrete requirements for coverage tools
(Chapter 3), designing a test suite based upon them (Chapter 4), and finally developing a tool to verify
code coverage tools’ conformity to the test suite (Chapter 5).

Following the achievement of the three aforementioned components, we possess a standardized framework
with which ambiguous scenarios in the realm of code coverage can be tackled much more efficiently.

In the scope of C++, we deem the established framework particularly useful in the coverage scenarios
of default constructors, macros, inline functions, non-deterministic code, templates, exception-handling,
optimizations, multithreading, and dead code.

Throughout this chapter, we demonstrate how our efforts resulted in standardized coverage of code
containing the aforementioned vague programming constructs, which we have determined much more
efficiently due to the framework in place.

By virtue of suggesting a systematic coverage approach whenever such coding elements arise in accordance
with our developed framework, we actively bridge the gap between various coverage tools’ outputs.
The results showcased are revisited and discussed in detail throughout Chapter 7.

6.1 Default Constructors

1| #include <iostream>

3| class TestClass {
4| public:

TestClass () ; // Constructor declaration
6| };
5| TestClass::TestClass () = default; // Constructor definition

10| int main() {
11 TestClass testObject;
12 return O0;

Listing 6.1: Default Constructor

In C++, a default constructor is one that can be called without any arguments [34]. Its main purpose
is guaranteeing the automatic initialization of all appropriate parameters to their default values [35].
The declaration of a default constructor’s existence to the compiler is evident on line 4 in listing 6.1,
whereas its definition lies on line 8 outside the scope of the class. Despite the constructor being called
by virtue of class instantiation taking place on line 11, Gcov peculiarly only reports the definition’s
statement as covered and not its declaration. The tester should be aware of the amount of times a
class is instantiated throughout the testing phase, which would ideally be reflected both on constructors’
definitions and declarations. Had there been three objects instantiated from the class, all coverage tools
need to demonstrate a coverage count of 3 for both the class definition and declaration to provide clarity.

30

CHAPTER 6. RESULTS

6.2 Macros

#define DIV (a, b) ((a) / (b))
2| int main() {
3 int sum = DIV(6, 3);

W3

Listing 6.2: Macro

A macro in C++ is a section of code that has its body placed by the compiler wherever its name is
called during compilation [36]. In listing 6.2, the definition of DIV on line 1 replaces the call on line 3
during compilation. Thus, the actual code undergoing execution is the compiler’s expanded macro, not
the definition on line 1. It’s clear that the coverage metric of the macro call on line 3 should be reported,
but the macro definition’s coverage is not entirely clear as it doesn’t show up in compiled code. As a
result, coverage tools would ignore reporting its coverage (how many times the macro has replaced the
calls for it, by the compiler). Ideally, the 4th and 5th requirements for Statement Coverage (3.1) should
be fulfilled here, depending on whether the macro has been called throughout the source code. If it
hasn’t been, then the tool shall unambiguously declare the statement still requires compile-time testing;
Whereas if it has been called at least once, then the tool shall unambiguously declare the statement does
not need further compile-time testing.

6.3 Inline Functions

inline int mult(int a, int b) {
return a * b;

w W

}

(| int main() {

5 int result = mult(2, 3);
s 3

Listing 6.3: Inline Function

C++ allows programmers to define functions as ‘inline’, allowing the code of the function to be expanded
at the point where it is called, which eliminates procedure call overhead. Inline functions are capable
of resulting in both a reduction of code size and an increase in execution speed [37]. In listing 6.3, the
compiler will insert the function’s body onto the caller on line 5, which makes it unclear where coverage
should be attributed (the caller or the inline function). Coverage tools may report coverage for the caller
on line 5 but not the inlined function body’s statements (only line 2 in this case), because they were not
technically invoked on a statement-by-statement basis. However, ideally, coverage tools should report
both the caller and the inlined function body’s statements as covered. Reporting one at the expense of
the other may cause confusion regarding the coverage status of the function.

6.4 Non-deterministic Code

1| #include <random>

2| #include <iostream>

3l int main() {

) int x = rand() % 2;

5 if (x) {

6 std::cout << "x is randomly odd" << std::endl;
7 return O0;

8 ¥

9 return 1;

Listing 6.4: Non-deterministic Code

In listing 6.4, the execution of line 6 is non-deterministic in nature since it’s reliant on a randomized
value. Abiding by a random probability distribution, the statement will be covered on occasion, and
not covered otherwise. Coverage tools should not be burdened with this scenario, as their reporting will
remain accurate regardless (the tool operates normally based on the random value produced).

31

CHAPTER 6. RESULTS

It would, however, be preferred for such non-deterministic cases to be reduced for simplicity. Tests
with nondeterministic executions are inherently fragile and should ideally be rewritten [38]. Option-
ally, coverage tools could be programmed to produce a flag/warning whenever a statement containing
a random value generator is detected, to warn the software tester of non-determinism. Nonetheless,
showcasing accurate coverage that matches the random value produced is sufficient in accordance with
the requirements expected from coverage tools.

6.5 Templates

template<typename T>
2| T add(T a, T b) {
3 return a + b;

4

5/ int main () {

6 int sum = add<int>(2, 3);

7 float fSum = add<float>(2.8, 3.4);
g}

Listing 6.5: Template

For listing 6.5, the utility of a function template is displayed on line 1. Templates are designations for
classes and functions to operate with generic types, eliminating the need to designate a certain data type
as a parameter. In other words, function templates provide a functional behaviour that can be called
for different types [39]. As witnessed above, the template function definition on line 2 is utilized once
for the int assignment on line 6 and once for the float assignment on line 7. These two assignments
call two separate, different versions of the template function. Ideally, the coverage tool should treat each
distinct instantiation as a separate entity and report its coverage in accordance with whether or not it’s
been tested. The template blueprint statement and body should ideally reflect the amount of times the
template has been instantiated correctly, in this case twice. Glancing over the template coverage status
should provide the software tester with the necessary information to determine how many generic-type
instances took place.

6.6 Exception Handling

1| #include <iostream>
2| #include <stdexcept>

/| int subtract(int a, int b) {

5 if (b > a) {

6 throw std::runtime_error(”Negative value results unallowed.");
7 ¥

8 return a - b;

ol ¥

11| int main() {

12 try {

13 std::cout << subtract(3, 5) << std::endl;
14 } catch (const std::exception& err) {

15 std::cout << err.what() << std::endl;

16 ¥

17 return O;

Listing 6.6: Exception Handling

An exception in C++ can be described as a runtime anomaly, it typically arises during program execution.
The utility of exceptions is helpful when tackling abnormal behaviour such as division by zero. Exception-
handling occurs by virtue of three keywords: try, catch and throw. The try keyword signals a code
segment for which exceptions are expected, whereas the catch keyword captures a specific exception
type and handles it, and finally the throw keyword is used to raise an error whenever an exception is
known to take place [40]. In listing 6.6, an attempt to reach a negative value following subtraction is
made, for which an exception is caught on line 15 due to the throw keyword present on line 6. It is

32

CHAPTER 6. RESULTS

important to note that exception-handling causes different execution pathways to exist, depending on
the try block’s raised exceptions. Following a single parameterless run, the return statement on line 8
will remain unexecuted, which is comprehensible since an exception was thrown. Had the value of a been
higher than b on line 13’s function call during the testing phase, then 100% statement coverage would’ve
been achieved. This is within the bounds of what is expected from code coverage tools, as the return
statement should not showcase a need for further testing given its execution has been bypassed due to
an exception. Ideally, all statements above would showcase coverage apart from the return statement,
which is unreachable since an exception was thrown on line 6.

6.7 Optimizations

| int main() {
int a = 1;
a = 2;

4 return O;

AN

Listing 6.7: Optimization

Compilers are capable of producing optimizations that enhance the execution of programs. GCC, as
an example, categorizes three various levels of optimization that the developer can alternate between
when compiling [41]. The benefit of compiler optimizations lies in the increased performance achieved by
virtue of reducing code size and execution time following changes. Listing 6.7’s main function declares
a variable, a, and assigns a value to it on line 2. This value is immediately overridden by another
value on the subsequent line. Depending on the degree of optimization, the initial statement may be
optimized (since it’s immediately assigned another value without any operations in-between) or the entire
a variable may be optimized, since it is set but unused. Since the degree of optimization affects code
coverage output, it’s ideal to normalize the compilation of source code with the exact same level of
optimization for the sake of assessing coverage tool performance. In our case, without any optimizations,
the coverage tool should ideally report each line as covered apart from the closing bracket on line 5.

6.8 Multi-threading

| #include <thread>
2| #include <iostream>

1| bool check;

6| void validateCheck () {
7 check = true;

gl

10| void statusCheck () {

11 if (check) {

12 std::cout << "Check passed." << std::endl;
13 }

14| }

16| int main () {
17 check = false;

19 std::thread tA(validateCheck) ;
20 std::thread tB(statusCheck);

1
22 tA.join () ;
23 tB.join();

25 return O0;

Listing 6.8: Multi-threading

Threads and their execution operate under the guidance of operating system schedulers. Due to the

33

CHAPTER 6. RESULTS

inherent non-determinism involved in the scheduling process, there is no strict guarantee which thread
emerges victorious in race conditions [42]. For listing 6.8, thread scheduling determines whether or not
the print statement on line 12 is executed, since it requires tA running prior to tB (which we have no
guarantee of). Within the outlined requirements for code coverage tools, the software tester should be
wary of non-determinism in cases of thread-reliant code files. It is ideally sufficient to showcase coverage
for the statements that abide by the thread scheduler’s order of execution, as the software tester can
directly deduce which thread was executed first by observing the coverage status.

6.9 Dead Code

int main() {
return O;
int a = 2;

Listing 6.9: Dead Code

Source code that is fully guaranteed to be unreachable can be labelled as ‘dead code’. The existence
of dead code is deemed a flaw that requires elimination, usually coming about by poor development
practices [43]. In listing 6.9, the assignment on line 3 is considered ‘dead code’, for which execution is
an impossibility regardless of the rigorousness of tests employed by the software tester. By virtue of
never finding the dead code in the compiled binary, coverage tools are ideally expected to abide by the
Statement-3 requirement outlined in section 3.1, where, for every non-executable (i.e. can never undergo
testing) source code statement, the tool shall unambiguously declare that the statement does not require
testing.

34

Chapter 7

Discussion

In this chapter, we primarily discuss the results of our experimentation showcased in Chapter 6, following
the establishment of a standardized framework for any C++ code coverage tool.

In an ideal scenario, coverage tools would offer comprehensive insights into all facets of the code relevant
to quality engineers or developers. Nonetheless, due to inherent technical constraints, there’s disparity
between the programmer’s intuitive expectations from a coverage report and the actual output of code
coverage tools.

The main motivation for our efforts lies in mitigating such disparity as much as possible, which we have
initiated by having a framework in place that allows for rapid assessment of coverage tools’ performances
when subjected to our requirement-based test-suite.

The developed framework includes various test units for different coverage criteria and requirements,
with some of them focusing on particularly ambiguous coverage scenarios in the scope of C++. By
imposing the concrete requirements and ambiguous scenarios on any coverage tool, we can assess its
degree of conformity in an attempt to bridge any existent gaps.

Since the framework’s three components (requirements, test-suite and verification tool) have been dis-
cussed in detail throughout their respective chapters, we will mainly focus in this chapter on discussing
the ambiguous scenarios resolved as a result of our efforts.

All figures showcased in this chapter represent, from our point of view, the ideal coverage output for the
files presented following a single parameter-less and non-optimized run.

7.1 Disparity between Constructor Declaration and Definition

A constructor is a special function that is automatically called by the compiler whenever a class instance
(object) is created. Its main objective is initializing the object’s memory allocation and the values of its
members. Despite explicit calling of the constructor being preferred, it can also be implicitly created by
the compiler if the user does not define it [44].

The C++ convention does not strictly require constructors to possess both a declaration and definition.
If defined within the class body, then there is no need to declare the constructor anywhere. Both are
required, however, when the constructor is intended to be defined outside the class definition. In such
cases, a constructor declaration is mandatory within the class’ scope. When there is disparity in the
reporting of coverage amongst both components, it becomes exceedingly confusing for the software tester
to deduce how many object instantiations took place.

In the case of Geov, it deems showcasing coverage metrics only for the definition, but not the declaration,
as sufficient. This introduces two problems: the coverage of the declaration remains empty without
providing the user any meaningful information, and the user now has to consult the entire source code
to deduce how many class instantiations took place instead of a simple observation of the constructor
declaration’s execution count. The coverage of both declaration and definition should ideally go hand in
hand, completely dependent on the number of objects created from the class.

Finding 1: Coverage tools should ideally avoid unequal coverage treatment of constructor
declarations and definitions. For every class instantiation, the coverage count of both declaration
and definition is ideally incremented.

35

CHAPTER 7. DISCUSSION

Figure 7.1: Ideal Coverage of Constructors

7.2 Coverage of Macro Definitions and Calls

When a preprocessor encounters a macro name in source-code, it replaces the name with the definition
declared by the user using the #define directive. This process takes place prior to compilation, so when
the compiler initiates its task, all necessary macro replacements should have already taken place.

Most C++ programs rely on macros to avoid function call overhead for small and frequently-called
operations. Due to the semantics of macros differing vastly from the semantics of functions, the use of
macros is largely prone to errors [45]. It’s rare to find macros with local variables because they rapidly
become illegible [46]. This dilemma has even caused Kumar et al. to create a set of demacrofication
tools that aid in the modernization and enhancement of C++ programs [47].

Since macros are handled pre-compilation, there needs to be differentiation in coverage when handling
the definition and the calls. For each macro call, it is sufficient to report its execution normally like any
other statement. As for the macro definition statement, if it never gets used, then the code coverage tool
should showcase that it has failed compile-time testing. When the software tester consults the #define
statement, he’ll ideally deduce whether the macro has indeed been called and observe how many times
it’s been used.

Finding 2: Coverage of macro definitions should provide information regarding their utility
throughout the source-code, whereas their calls can be covered regularly like any other statement.

Figure 7.2: Ideal Coverage of Macros

7.3 The Utility of Inline Functions

Inline functions are pre-defined functions that get expanded on the line they’re called, maintaining
the same legibility and safety of regular functions. This expansion takes place at compile-time by the
compiler, as opposed to macros which were governed by a preprocessor, yet they maintain the same
code-space and run-time efficiency as them. The main appeal for their utility lies in the elimination of
function call overhead, which comes at the cost of additional registers.

A single inline function definition can be implemented multiple times throughout a program, which can
easily lead to confusion regarding which statements to mark as covered. Ideally, the inline function’s
definition along with its statements should reflect their true execution count which signifies the number
of times they have been called. As for statements containing inline function calls, they should be treated
as any other statement regarding their coverage status. This is opposed to macros, which had their
definitions undergo a specific designation that signals their handling prior to compile-time.

36

CHAPTER 7. DISCUSSION

Finding 3: Coverage of inline functions’ definition should ideally reflect the amount of calls
made throughout the program, whereas inline function call statements are to be treated regularly.

mult(

1a ™ b;

main() {
result = mult(2, 3

Figure 7.3: Ideal Coverage of Inline Functions

7.4 Handling of Non-Deterministic Code

Non-deterministic code, which can be defined as code that may produce different outputs despite being
given the exact same input, poses a real threat to code coverage consistency. Its effects are so undesirable
that Hosek et al. have proposed for the enforcement of deterministic execution during the development
process, in an attempt to quantify and optimally get rid of non-deterministic code [48]. In addition to
confusion during the coverage process, non-determinism also introduces a lack of reproducibility through-
out the debugging process, which complicates it further. If outright replacement with deterministic code
is infeasible or detriments the testing integrity, then the non-deterministic segment could be isolated and
tested separately.

Coverage tools that operate dependently on randomized or non-deterministic programs are not conflict-
ing any of the requirements expected from them, despite the fact confusion may arise in subsequent runs.
The software tester should be wary of any non-determinism, as it signifies an inherent inconsistency is
likely during execution. Such inconsistencies become increasingly apparent when multiple runs of the
code take place. Ideally, the coverage tool should simply approach non-deterministic segments by accu-
rately reflecting the randomized values generated during program execution.

Finding 4: Non-determinism in code presents a real challenge for consistent code coverage.
If deemed irreplaceable, coverage tools should report accurate coverage in accordance with the
random values generated.

d: :endl;

Figure 7.4: Ideal Coverage of Non-Deterministic Code

7.5 Treatment of Function Templates

Template Metaprogramming is an initiative in C++ to execute algorithms during compilation time [49].
The main appeal of resorting to templates is to gain the luxury of passing data types as parameters
to a ‘general’ function that can perform the same operation deterministically regardless of the data
types passed, given they are compatible. The operation of templates poses a real challenge to code
coverage tools as, depending on the instantiation, actual code generated for execution might differ from
the template definition in the source file.

Coverage tools should ideally showcase the correct execution count for the template’s definition, reflecting
the number of parametrized function calls made throughout the program.

37

CHAPTER 7. DISCUSSION

As for the template function calls themselves, they ought to follow regular procedure for statement
coverage. Discrepancies between the number of template function calls and the definition’s execution
count raises confusion regarding the extent of its utility, which complicates the software tester’s task.

Finding 5: Coverage of template definitions should ideally reflect the number of function calls
made throughout the program, as any discrepancies will misrepresent the extent of their utility
to the software tester.

Figure 7.5: Ideal Coverage of Templates

7.6 Behaviour of the Exception-Handling Mechanism

During the several phases of software development, source-code is susceptible to exceptional events such
as insufficient resources, missing files, or invalid user input. To deal with this, C4++ possesses exception-
handling, a mechanism by which the handling of such events is feasible. The specially-designated func-
tions involved in the process can throw and exception to be captured by the mechanism in the case
of encountering anomalies [50]. By virtue of this, the exceptional situation is identified rapidly by the
compiler, and there is no need to write further functions in order to handle the raised exception(s).
Since each and every exception-handler possesses the possibility of dealing with a thrown exception, code
coverage tools have to deal with the existence of multiple paths as well as the inherent non-linear control
flow. From a requirement-based perspective, it is sufficient for the tool to report on the coverage status
accordingly with whether or not an exception is thrown.

Finding 6: When covering the exception-handling mechanism, it is sufficient for coverage tools
to report execution in accordance with the control-flow paths dictated by thrown exceptions.

e value results unall

Figure 7.6: Ideal Coverage for Exception-Handling

7.7 Accounting for Compiler Optimizations
Different compilers maintain different approaches to the deployment of optimizations, which is an issue

that requires careful approach. When source-code undergoes optimizations, several procedures may take
place such as inlining (where regular functions are transformed into inline ones seen in section 6.3),

38

CHAPTER 7. DISCUSSION

strength reduction (taking expensive operations such as multiplication and transforming them to use less
expensive ones such as addition) and constant folding (where variables with values known at compile-
time are directly replaced) [51].

Given GCC allows for seven varying levels (degrees) of optimization [52], there is a real threat to coverage
output consistency if a standardized setting isn’t enforced. For this, we maintain optimization-less runs
of our test suite. By eliminating the existence of optimizations, we can ensure the ideal coverage of
source-code is produced by tools-under-test.

Finding 7: Compiler optimizations pose a real threat to consistent coverage output, therefore
they should ideally be disabled during the assessment of coverage tools’ performance.

Figure 7.7: Ideal Coverage for Optimizations

7.8 Inconsistencies of Multithreading

C++ threads carry an inherent notion of non-determinism with their execution, since they rely on the
operating system’s scheduler to allocate their necessary processor times. Running the exact same pro-
gram containing threads multiple times may yield different results, in turn causing differing parts of the
code to undergo execution. This lack of predictability makes coverage a daunting task for tools, as their
instrumentation runs the risk of synchronization overhead within multithreaded programs.

In similar fashion to the exception-handling mechanism, the coverage tool should not concern itself with
the potential inconsistencies of multithreading, since the coverage of source-code dictated by thread ex-
ecution is expected behaviour. As a result, the software tester should be wary of the non-deterministic
nature of threads whilst expecting the tool to reflect accurate metrics following the actual thread execu-
tion schedule.

Finding 8: Coverage of threads is particularly challenging due to their unpredictable nature of
execution, for which coverage tools are solely responsible to report metrics following the scheduler’s
decisions.

check;

ateCheck() {

Figure 7.8: Ideal Coverage of Multiple Threads

39

CHAPTER 7. DISCUSSION

7.9 Coverage of Dead Code

Software systems are susceptible to potential problems, labelled bad smells, one of which is dead code
[63]. Tt’s regarded as unnecessary code since it’s unreachable and/or unused, and generally regarded
as harmful for development since it detracts from source-code comprehension [54]. Since dead code
detection is a highly requested feature amongst software professionals [55], compilers commonly optimize
out dead code to produce rather efficient executable binaries.

Due to our adoption of a standardized optimization-less approach during the assessment of tools under
test, we are not particularly affected by this fact. Within the bounds of the requirements set out, it
is sufficient for code coverage tools to accurately report metrics for files containing dead code, as its
elimination is not the coverage tool’s responsibility. The segments of dead code are unreachable to the
coverage tool, and therefore there are no expectations of reported metrics.

Finding 9: Dead code is a bad smell that harms the development process, which coverage tools
could never report since it does not get executed.

main() {

return @;

Figure 7.9: Ideal Coverage of Dead Code

7.10 Threats to validity

There are particular decisions that may affect the validity of our efforts, both internally and externally.

7.10.1 Internal Validity
Incomplete Test Suite

There’s a huge amount of constructs and functions for all types of applications in C++, which we cannot
realistically populate the test suite with. As a result, we have settled for tests that cover key aspects of
our chosen coverage criteria.

Bias Towards Ambiguity
Being a key objective of this thesis, the mitigation of ambiguous scenarios took a precedent when it came
to designing test units, which potentially might have come at the expense of other noteworthy findings.

Version Dependency

Given support for condition coverage was only recently implemented by the GCC community for Gceov,
we were dependent on the particular version for which this patch took place. Changes in versions may
lead to deviations in coverage.

7.10.2 External Validity

Fixated Coverage Conditions

In the creation of test units, we utilized C++4, compiled with GCC, gauged coverage using Gcov, and
maintained a single parameterless unoptimized run during testing. Any changes to these fixated condi-
tions would raise coverage mismatches, which is why their fixation is crucial.

Language Evolution

Many of the ambiguous constructs could be enhanced, replaced and/or modified in subsequent releases
of C++, or even new ones may arise.

40

Chapter 8

Related work

Throughout this chapter, we present established work in literature that is related to our focus of stan-
dardizing the performance of C+4 code coverage tools. We divide the related work into the following
categories: surveying and comparing C++ code coverage tools, hunting for bugs in C/C++ code cover-
age tools via randomized differential testing, evaluating a C++ code coverage analyzer, and suggesting
recommendations for the effective use of code coverage tools.

8.1 eXVantage - A Survey of Coverage Based Testing Tools

Yang et al. were primarily concerned with studying and comparing 17 code coverage tools, placing pri-
mary emphasis on assessing coverage measurement, and secondary emphasis on debugging assistance,
automatic test case generation, and test report customization [56]. In addition to the surveying of tools
on the market, the researchers have also developed their own in-house tool suite for inclusion in the sur-
vey, labelled ‘eXVantage’, which is capable of coverage testing, debugging and profiling. A key takeaway
from the assessment of coverage measurement is the finding that source-code instrumentation, which we
have relied on heavily throughout research, has less efficient compilation time but more portability and
rather direct results as opposed to runtime instrumentation.

The selection of coverage criteria for inclusion in projects is entirely dependent on the domain of appli-
cation, where more criteria offered for analysis provides greater merit to coverage tools as their scope
of utility expands. Due to the usual infeasibility of targeting 100% code coverage for programs, the
industry generally deems 60% to 70% a sufficient result. Since bypassing the 60% mark is a daunting
development task, the notion of assisting in the achievement of high code coverage is regarded as one of
the most important features provided by robust coverage tools. As opposed to ranking coverage criteria
in terms of usefulness, which is avoided due to differing domains prioritizing differing criteria as deemed
fit, the authors argue that the focus should be on attaining a code coverage tool that both allows for
various coverage criteria and ideally employ metrics that would aid testers in recognizing the error-prone
parts of the code.

Automation, regarded as a key feature for coverage tools since the task of software testing is inher-
ently resource-consuming [57], presents itself in the form of test generation. Despite the appeal for code
coverage-based test generation, it was found that none of the surveyed coverage tools are capable of
generating tests for C/C++, with only three tools capable of automatically generating Java test cases.
Apart from test generation, a friendly graphical interface is deemed a key feature for comparison since
its existence enhances the user experience greatly. The generated coverage report, a key aspect of the
graphical interface of every tool, should present coverage metrics neatly and allow for result customiza-
tions.

The conducted survey’s objective is to study the various criteria considered by practitioners when em-
ploying a coverage-based testing tool, with emphasis on Java and C/C++. To conclude their efforts, the
authors maintain that every single tool surveyed possesses unique features that render it useful in its
respective domain of application. By focusing on the various desired aspects presented, software testers
are better equipped to make an informed decision when choosing the ideal coverage tool for their project.

41

CHAPTER 8. RELATED WORK

8.2 C2V - Hunting for Bugs in Code Coverage Tools via Ran-
domized Differential Testing

Y.Yang et al. have noticed little attention in research is dedicated to investigating the reliability of
code coverage tools. This is alarming as numerous quality assurance tasks, such as software testing,
fuzzing, and debugging, depend primarily on such crucial reliability. As a result, the authors propose
an unprecedented testing approach to detect software bugs in two widely used coverage tools - gcov
and llvm-cov [58]. They implement a randomized testing tool, C2V (Code Coverage Validation), for
application onto the two aforementioned tools to detect bugs.

The novel testing approach adopted by the authors is found to be increasingly effective, which is evident
in the success witnessed during experimentation. C2V can be viewed as a tool-set rather than a tool, as
it consists of the following components:

random program generator
comparer to identify inconsistencies between coverage reports

[]
(]
e filter to remove test programs triggering same coverage bugs
e test program reducer

(]

inspector to automatically determine which coverage tools have bugs for bug reporting

Gcov, the primary code coverage tool extensively used throughout our research, witnessed 46 bugs

detected by C2V, in addition to 37 bugs in llum-cov. The results achieved showcase the unideal state of
reliability in two of the most widely-used C/C++ code coverage tools, which calls for further research
in determining the feasible methods of enhancing their reliability.
The authors’ efforts overlap with ours, but with slight differences in the desired outcome. Whereas
they primarily actively seek to detect coverage defects such as incorrect execution counts and erroneous
coverage information in coverage tools, we were mainly focused on developing a framework that governs
the behavior of code coverage tools. In fact, many of the defects presented by Y.Yang et al. are useful
for inclusion in our own test suite.

8.3 nwcec - Experimental Evaluation of a Test Coverage Ana-
lyzer for C/C++

Frakes et al. were surprised to witness no experimental evaluation of test-coverage analyzers in literature
prior to their study, given their long history of utility in the software testing domain. As a result, they
decided to investigate the effectiveness of nvce, a C/C++ coverage analysis tool-set, on professional pro-
grammers at AT&T Bell Laboratories [59]. The tool-set includes automatic source-code instrumentation
of programs, a printed coverage report showcasing the segments lacking testing, a generated summary
of the covered basic blocks, and analysis of the differences between various test runs.

Two experiments were conducted to gauge the effectiveness fully, the first was to explore the tool’s effi-
ciency in bug detection, whereas the second was determining the tool’s ability to achieve high levels of
coverage. For the initial experiment, it was found that nvcc users were capable, on average, of allocating
65% of the total bugs in a UNIX system command seeded with 11 runtime bugs and 160 source-code
lines (excluding comments). This is as opposed to non-nvce users, who managed to detect 58% of the
total bugs on average. Additionally, there was a positive relationship found between bug percentage
detected and participant years of experience.

As for the second experiment, it was found that nvcc users achieved a remarkably higher level of coverage,
which implies that the tool enhances the process of code coverage. The laboratory experiment concludes
that the utility of nvcc improves testing productivity, results in a higher coverage level, improves source-
code bug detection, and is perceived by participants to be a valuable testing tool.

8.4 Enhancing Software Testing by Judicious Use of Code Cov-
erage Information

Berner et al., upon closer inspection of code coverage tools’ utility in various projects, asserted that
it’s beneficial yet not without pitfalls. Their inspection consisted of experimental studies in addition

to experience from industry projects [60]. To mitigate such pitfalls, the authors employ a methodology
which is thoroughly described, examine how code robustness affects coverage, and determine the potential

42

CHAPTER 8. RELATED WORK

benefits of consolidating automated tests. Following their experimentation, a list of key recommendations
for software testers’ effective utility of code coverage analysis and visualization tools is presented to the
reader, of which we deem the following as noteworthy:

e Make expectations clear before introducing the tool. Given a reasonably usable automated test
suite, make sure that the tool will mostly influence the developers to (in decreasing order):

1. write more robust code
2. find bugs or anomalies in the error handling
3. work on the consolidation of the test cases

e Do not introduce coverage analysis and visualization tools in projects without a reasonably usable
automated test suite.

e Do not expect to find many new bugs in the blue-sky behavior of systems. This is a direct
consequence of the preceding takeaway: not to use these tools in projects without a reasonably
usable automated test suite.

e Consider the introduction around mid-construction. Ensure introduction is neither too early (tool
will not be fully beneficial) nor too late (utility will be confined to bug-detection).

e Keep the feedback cycle between coding, testing and coverage visualization as short as possible.

e Emphasize that the primary goal is not to reach an ultimately high coverage rate, but to exploit
coverage visualization for identifying areas of the code that are not covered by tests yet.

e If you decide to prescribe a certain coverage rate or percentage, then prescribe a reasonably high
one and make sure that it cannot be reached solely by testing the blue-sky behavior.

It is only through paying close attention to the aforementioned points, that software testers would reap the
most benefits from employing code coverage and visualization tools. The authors additionally determine
that test automation efforts are usually closely linked to the project’s testability, where systems that are
not designed with testability in mind often deal with the coverage rate stalling somewhere between 70%
and 80%.

This research is primarily concerned with providing a guideline for software testers to utilize code coverage
tools in a judicial manner. In an attempt to enhance the code coverage process, the authors attempt
to govern the utility of coverage tools as opposed to their behavior, like we did. Both our research and
theirs will inevitably benefit software testers to a considerable extent in their daily work.

43

Chapter 9

Conclusion

We established a standardization framework in an effort to bridge the gap between C++ code coverage
tools. We elicited necessary requirements for the utility of such tools in safety-critical domains, designed
a test suite that guaranteed the evaluation of such requirements, and implemented a verification tool
that automatically assesses whether code coverage tools are compliant to our findings. We found various
ambiguous scenarios unique to the C++ language, which we were capable of assessing efficiently using
the framework in place.

9.1 RQ1

What essential requirements must a code coverage tool satisfy to effectively evaluate the
completeness of C++ source code testing within safety-critical systems and applications?
Statement, Branch and MC/DC coverage criteria are deemed sufficient for use within safety-critical
applications. Each of these criteria possesses their own set of requirements that ensures all aspects of its
utility are accounted for and tested, which we have elicited in accordance with international standards.
The essential requirements include accurate coverage of executable and non-executable source-code,
compile-time evaluated and unevaluated code, boolean decisions and their branches, count and evaluation
of conditions in such decisions, and the independent ability of conditions to affect the decision outcome.

9.2 RQ2

How can we design a test suite that evaluates these key requirements while handling am-
biguous C++4 coverage scenarios effectively?

To evaluate the essential requirements as well as ambiguous scenarios, we developed a standard format
to relay the coverage of .cpp files and constructed coverage files using it, employed a standard execu-
tion pattern across test units, took advantage of object-oriented programming and constructed coverage
objects to represent coverage files for efficiency, and structured the test suite in line with the elicited
requirements.

9.3 RQ3

How can we implement a tool to accurately assess the effectiveness of various C++4 code
coverage tools in accordance with our devised test suite?

To gauge the conformance of coverage tools to our findings, we developed a Python-based verification
tool that converts various widely-used file formats output by coverage tools to coverage objects. These
objects can be quickly compared to those of our designed test suite using a test driver, where regular
expressions are employed to ensure the information in the coverage file is captured correctly during the
coverage object’s construction.

44

CHAPTER 9. CONCLUSION

9.4 Future work

In the future, it would be an ideal scenario to successfully productize the tool and begin using it to assess
other code coverage tools in the industry.

To increase the framework’s use cases, we could expand the test suite to accommodate other coverage
criteria that are not tied to safety-critical systems. Given Java is capable of being source-code instru-
mented, in addition to Python, JavaScript, Ruby, and Python, it’s possible to augment our research and
explore the ambiguities inherent with these various language specifications.

There are nuances in the ways of which coverage tools’ output files name the relevant parameters, e.g.
to signify the line number, the responsible variable can be labelled ‘line_number’, ‘line_no’; ‘line#’...etc.
We are currently fixing such nuances by manually renaming the variables of interest to us in the Python
modules, which is not ideal. An incredible improvement would be to employ regular expressions that are
capable of automating parameter-detection, saving us time and effort.

45

Acknowledgements

I would like to deeply express my sincere gratitude and appreciation to my academic supervisor, Martin
Bor, for the incredible guidance and advice I received throughout the implementation of this thesis.

I am forever indebted to my daily supervisor, Nicola Rossi, for tirelessly assisting me on a daily basis
and answering every single question I had. Truly, none of this would have been possible without the
unwavering sense of support I felt every day in the office.

I feel immensely grateful for the opportunity to conduct this enticing research, which I attribute to UvA
and Solid Sands. It’s been a truly wonderful year of hard work, learning, and developing character along
with the rest of the MSc Software Engineering class of 2023! Sincerely wishing the best of luck to my
colleagues on their journey, as I focus on my own moving forward.

I want to particularly extend a heartfelt thank you to both of my sisters, Mariam and Nayera, for having
been truly by my side through thick and thin.

46

Bibliography

[1]

P. Tripathy and K. Naik, Software testing and quality assurance: theory and practice. John Wiley
& Sons, 2011.

B. Hetzel, The complete guide to software testing. QED Information Sciences, Inc., 1988.
G. J. Myers, C. Sandler, and T. Badgett, The art of software testing. John Wiley & Sons, 2011.

S. Planning, “The economic impacts of inadequate infrastructure for software testing,” National
Institute of Standards and Technology, vol. 1, 2002.

R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite evaluation by developers,” in
Proceedings of the 36th International Conference on Software Engineering, ser. ICSE 2014, Hyder-
abad, India: Association for Computing Machinery, 2014, pp. 72-82, 1SBN: 9781450327565. DOTI:
10.1145/2568225.2568278. [Online]. Available: https://doi.org/10.1145/2568225.2568278.

P. S. Kochhar, F. Thung, and D. Lo, “Code coverage and test suite effectiveness: Empirical study
with real bugs in large systems,” in 2015 IEEFE 22nd international conference on software analysis,
evolution, and reengineering (SANER), IEEE, 2015, pp. 560-564.

F. Horvath, T. Gergely, A. Beszédes, D. Tengeri, G. Balogh, and T. Gyiméthy, “Code coverage
differences of java bytecode and source code instrumentation tools,” Software Quality Journal,
vol. 27, pp. 79-123, 2019.

GNU, “Gcov (using the GNU compiler collection (GCC)),” [Online]. Available: https://gcc.
gnu.org/onlinedocs/gcc/Geov.html.

K. Arnold, J. Gosling, and D. Holmes, The Java programming language. Addison Wesley Profes-
sional, 2005.

C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis & trans-
formation,” in International symposium on code generation and optimization, 2004. CGO 2004.,
IEEE, 2004, pp. 75-86.

P. K. Chittimalli and V. Shah, “Gems: A generic model based source code instrumentation frame-
work,” in 2012 IEEE Fifth International Conference on Software Testing, Verification and Valida-
tion, IEEE, 2012, pp. 909-914.

GNU, “GCC, the GNU Compiler Collection - GNU Project,” [Online]. Available: https://gcc.
gnu.org/.

J. A. Bergstra and A. Ponse, “Proposition algebra and short-circuit logic,” in Fundamentals of
Software Engineering: 4th IPM International Conference, FSEN 2011, Tehran, Iran, April 20-22,
2011, Revised Selected Papers 4, Springer, 2012, pp. 15-31.

K. Laemmermann, C++ the design and evolution of c++, 2012.

J. Kvalsvik, “[PATCH v2] Add condition coverage profiling,” Nov. 2011. [Online]. Available: https:
//gcc.gnu.org/pipermail/gcc-patches/2022-November/605699 . html.

M. Whalen, M. Heimdahl, and I. De Silva, “Efficient test coverage measurement for me/de,” 2013.

K. J. Hayhurst, A practical tutorial on modified condition/decision coverage. DIANE Publishing,
2001.

International Organization for Standardization, “ISO 26262:2018 Road Vehicles - Functional Safety,”
Dec. 2018. [Online|. Available: https://www.iso.org/standard/68383.html.

Federal Aviation Administration, “AC 20-115D - Airborne Software Development Assurance Us-
ing RTCA DO-178C,” Apr. 2023. [Online]. Available: https://www . faa.gov/regulations _
policies/advisory_circulars/index.cfm/go/document.information/documentID/1032046.

47

BIBLIOGRAPHY

European Standards, “BS EN 50657:2017 Railways Applications. Rolling stock applications,” [On-
line]. Available: https://www.en-standard.eu/bs-en-50657-2017-railways-applications-
rolling-stock-applications-software-on-board-rolling-stock/.

International Electrotechnical Commission, “IEC 61508:2010 Functional Safety of Electrical/Elec-
tronic/Programmable Electronic Safety-related Systems (E/E/PES),” [Online]. Available: https:
//webstore.iec.ch/publication/5515.

Boeing Commercial Airplane Group, “DO-178C Software Considerations in Airborne Systems
and Equipment Certification,” [Online]. Available: https://www.dcs.gla.ac.uk/~johnson/
teaching/safety/reports/schad.html.

N. Li, X. Meng, J. Offutt, and L. Deng, “Is bytecode instrumentation as good as source code
instrumentation: An empirical study with industrial tools,” ISSRE, 2013.

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques, and tools. Addison-wesley
Reading, 2007, vol. 2.

J. Aarniala, “Instrumenting java bytecode,” in Seminar work for the Compilerscourse, Department
of Computer Science, University of Helsinki, Finland, 2005.

Z. Hu Jr, “A software package for generating code coverage reports with gcov,” 2021.

J. S. Rogers, “Language choice for safety critical applications,” ACM SIGAda Ada Letters, vol. 31,
no. 3, pp. 81-90, 2011.

M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in WODA 2003: ICSE Workshop
on Dynamic Analysis, 2003, pp. 24-27.

S. Lauesen, Software requirements: styles and techniques. Pearson Education, 2002.

“Jeee recommended practice for software requirements specifications,” IEEE Std 830-1998, pp. 1—
40, 1998. DOI: 10.1109/IEEESTD. 1998.88286.

D. Phillips, Python 3 object-oriented programming. Packt Publishing Ltd, 2015.

W. Savitch, Problem Solving with C++, 7th Edition, 7th. USA: Addison-Wesley Publishing Com-
pany, 2008, 1SBN: 0321531345.

1. ISO, “Iec 14882: 2003 (e),” Programming Languages—C++, American National Standards Insti-
tute, New York, 2003.

S. Meyers, Effective C++: 55 specific ways to improve your programs and designs. Pearson Edu-
cation, 2005.

R. S. Wiener, “Object-oriented programming in c++—a case study,” ACM Sigplan Notices, vol. 22,
no. 6, pp. 59-68, 1987.

S. Sykora, “Writing ¢/c++ macros: Rules, tricks and hints,” Stan’s Library, vol. 1, 2004.

D. Jordan, “Implementation benefits of c++ language mechanisms,” Communications of the ACM,
vol. 33, no. 9, pp. 61-64, 1990.

P. Marinescu, P. Hosek, and C. Cadar, “Covrig: A framework for the analysis of code, test, and
coverage evolution in real software,” in Proceedings of the 2014 international symposium on software
testing and analysis, 2014, pp. 93-104.

D. Vandevoorde and N. M. Josuttis, C++ templates: The complete guide, portable documents.
Addison-Wesley Professional, 2002.

C. De Dinechin, “C++ exception handling,” IEEFE Concurrency, vol. 8, no. 4, pp. 72-79, 2000.
M. T. Jones, “Optimization in gcc,” Linux journal, vol. 2005, no. 131, p. 11, 2005.

H.-J. Boehm and S. V. Adve, “Foundations of the c++ concurrency memory model,” ACM SIG-
PLAN Notices, vol. 43, no. 6, pp. 68-78, 2008.

R. Mahmood and Q. H. Mahmoud, “Evaluation of static analysis tools for finding vulnerabilities
in java and c¢/c++ source code,” arXiv preprint arXiv:1805.09040, 2018.

Z. Yan and C. In, “On unreasonable design in c++ constructor on unreasonable design in c+-+
constructor,”

B. Stroustrup, “An overview of c+-+,” in Proceedings of the 1986 SIGPLAN workshop on Object-
oriented programming, 1986, pp. 7-18.

48

BIBLIOGRAPHY

D. Herity, “C++ in embedded systems: Myth and reality,” Embedded Systems Programming, vol. 11,
no. 2, pp. 48-71, 1998.

A. Kumar, A. Sutton, and B. Stroustrup, “Rejuvenating c++ programs through demacrofication,”
in 2012 28th IEEFE International Conference on Software Maintenance (ICSM), IEEE, 2012, pp. 98—
107.

P. Hosek and C. Cadar, “Safe software updates via multi-version execution,” in 2018 35th Inter-
national Conference on Software Engineering (ICSE), IEEE, 2013, pp. 612-621.

Z. Porkolab, J. Mihalicza, and A. Sipos, “Debugging c++ template metaprograms,” in Proceedings
of the 5th international conference on Generative programming and component engineering, 2006,
pp- 255-264.

P. Prabhu, N. Maeda, G. Balakrishnan, F. Ivancié, and A. Gupta, “Interprocedural exception anal-
ysis for c++,” in Furopean Conference on Object-Oriented Programming, Springer, 2011, pp. 583—
608.

M. Godbolt, “Optimizations in c++ compilers,” Communications of the ACM, vol. 63, no. 2,
pp. 41-49, 2020.

D. Branco and P. R. Henriques, “Impact of gcc optimization levels in energy consumption during
¢/c++ program execution,” in 2015 IEEE 13th International Scientific Conference on Informatics,
IEEE, 2015, pp. 52-56.

S. Romano, “Dead code,” in 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME), IEEE, 2018, pp. 737-742.

M. Mantyla, J. Vanhanen, and C. Lassenius, “A taxonomy and an initial empirical study of bad
smells in code,” in International Conference on Software Maintenance, 2003. ICSM 2003. Proceed-
ings., IEEE, 2003, pp. 381-384.

A. Yamashita and L. Moonen, “Do developers care about code smells? an exploratory survey,” in
2013 20th working conference on reverse engineering (WCRE), IEEE, 2013, pp. 242-251.

Q. Yang, J. J. Li, and D. Weiss, “A survey of coverage based testing tools,” in Proceedings of the
2006 international workshop on Automation of software test, 2006, pp. 99-103.

M. C. Yang and A. Chao, “Reliability-estimation and stopping-rules for software testing, based on
repeated appearances of bugs,” IEEFE transactions on Reliability, vol. 44, no. 2, pp. 315-321, 1995.

Y. Yang et al., “Hunting for bugs in code coverage tools via randomized differential testing,” in
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE, 2019,
pp- 488-499.

W. B. Frakes, D. J. Lubinsky, and D. Neal, “Experimental evaluation of a test coverage analyzer
for ¢ and c++,” Journal of Systems and Software, vol. 16, no. 2, pp. 135-139, 1991.

S. Berner, R. Weber, and R. K. Keller, “Enhancing software testing by judicious use of code coverage
information,” in 29th International Conference on Software Engineering (ICSE’07), IEEE, 2007,
pp. 612—620.

49

o

Appendix A

Non-crucial information

"format_version": "1",

"gcc_version": "13.0.1 20230406",

"current_working_directory": "/home/ahmed/Desktop/solidsands/test_suite/statement/
covered",

"data_file": "/home/ahmed/Desktop/solidsands/test_suite/statement/covered/unit3.cpp"

"files": [
{
"file": "/home/ahmed/Desktop/solidsands/test_suite/statement/covered/unit3.
cpp",
"functions": [
{
"name": " _ZN9TestClassC2Ev",
"demangled_name": "TestClass::TestClass()",
"start_line": 8,
"start_column": 1,
"end_line": 8,
"end_column": 1,
"blocks": 1,
"blocks_executed": 1,
"execution_count": 1

"name": "main",
"demangled_name": "main",
"start_line": 10,
"start_column": 5,
"end_line": 13,
"end_column": 1,
"blocks": 3,
"blocks_executed": 3,

"execution_count": 1

¥

1,
"lines": [

{
"line_number": 8,
"function_name": " _ZN9TestClassC2Ev",
"count": 1,
"unexecuted_block": false,
"branches": [],
"conditions": []

},

{
"line_number": 10,
"function_name": "main",
"count": 1,
"unexecuted_block": false,
"branches": [],
"conditions": []

3,

{
"line_number": 11,

50

60
61

62

64

66
68

69

APPENDIX A. NON-CRUCIAL INFORMATION

"function_name": "main",
"count": 1,
"unexecuted_block": false,
"branches": [],
"conditions": []

-

"line_number": 12,
"function_name": "main",
"count": 1,
"unexecuted_block": false,
"branches": [],
"conditions": []

Listing A.1: Sample of JSON Coverage Output by Gcov

Listing A.1 showcases a sample of a JSON file output by Gcov, which is one of the accepted formats. The
test unit presented is the one used to examine the ambiguous disparity between constructor declaration
and definition. As discussed in section 6.1, the class declaration’s coverage on line 5 is peculiarly disre-
garded. The JSON file, like any accepted format, is converted to a coverage file by virtue of a Python3
method and modified for inclusion in the test suite, as seen in section 5.1.

51

