

SuperGuard: Qualifying the C Standard Library for

use in safety-critical applications

Introduction
Software solutions play an ever-increasing role in safety-critical and safety-
related systems, with the result that software malfunctions now represent
liabilities and a real threat in terms of injury, loss of life, the interruption of
essential services, or damage to the environment. As a result, international
standards organizations such as the International Organization for
Standardization (ISO) and the International Electrotechnical Commission (IEC)
have published widely recognized and widely adopted standards against which
software developers can certify the safety of their software. Examples include
ISO 26262 (Road vehicles – Functional safety) for automotive, EN 50128
(Communication, signaling and processing systems - Software for railway control
and protection systems) for rail transport, and IEC 61508 (Functional Safety of
Electrical / Electronic / Programmable Electronic Safety-related Systems) for
industrial applications.

The responsibility for demonstrating that application software, and the software
methods, processes, and toolchains used to develop it, comply with the relevant
functional safety standards lies firmly with the application developer. However,
it remains a fact that significant parts of the toolchain lie outside the developer’s
control. This is one of the reasons why compiler validation − an area in which
Solid Sands is already a world leader − has become a key issue for developers of
safety-critical systems. Virtually no compiler is bug-free, so it is extremely
important to know where a compiler malfunctions so that compiler errors can be
avoided.

It is also true that a significant part of the code that becomes part of the complete
application is likely to be compiled with a different use-case, set of compiler
options, and compilation environment from those being used by the developer.
This is because part of the code that typically ends up in an application
comprises pre-compiled library functions, such as those in the C Standard
Library (libc) that is often supplied in binary format as part of a software
development kit (SDK).

Contrary to the commonly held belief that because a library is supplied in binary
format it is insensitive to any particular use-case − i.e. the code is invariant − in
practice this is not the case. The inclusion of macros and type-generic templates
frequently makes library components use-case sensitive. So even if the library
was pre-qualified by the SDK supplier using the same compiler delivered with

2 SuperGuard – Solid Sands

the SDK, the matching use-case, compiler options, and target hardware
environment requirements are almost certain not to have been met, making it
difficult to demonstrate functional safety standard compliance.

To overcome this limitation, Solid Sands has introduced a new library
qualification tool called the SuperGuard C Library Safety Qualification Suite − a
requirements-based test suite for the C Standard Library with full traceability
from individual test results back to requirements derived from the ISO C
language specification. SuperGuard can be used to support qualification of C
Standard Library implementations for safety-critical applications both for
unmodified third-party library implementations and self-developed or self-
maintained implementations. Its role in the V-Model for software development is
shown below.

The Aim of Qualification
Qualification of a software library is critical because code from the library is
linked into the application and installed onto the target device. If a library
component is defective, the functional safety of the entire application is therefore
jeopardized. Every functional safety standard has its own specific objectives
when it comes to the use of software libraries, but in general they all share a
common goal: to verify that the library implementation complies to its
specification. ISO 26262 provides two routes to library qualification, detailed
separately in ISO 26262 Part 8 and ISO 26262 Part 6. The SuperGuard C Library
Safety Qualification Suite can be used in both cases.

ISO 26262 Part 8, Clause 12: Qualification of Software
Components
In terms of being characterized as a commercial off-the-shelf (COTS) product,
libraries are covered in Part 8, Clause 12: ‘Qualification of Software Components’.
This clause addresses the need for qualification of existing software components

3 SuperGuard – Solid Sands

such as libraries “to provide evidence for their suitability for re-use”. It
specifically mentions “software libraries from third-party suppliers”, which
clearly includes the standard libraries supplied with commercial SDKs. The
clause also applies to re-used internal software and open-source software.

Part 8, Clause 12 states that a pre-requisite for qualification is a statement of the
requirements of the software component. It also suggests that evidence that a
software component complies with these requirements should “primarily be
based on requirements-based tests”, that this can be achieved through the
“application of a dedicated qualification test suite”, that it should “cover both
normal operating conditions and behavior in the case of failure”, and that it
should “display no known errors that may lead to a violation of safety
requirements”.

Fortunately, for both the C and C++ languages, the library specification exists and
is publicly accessible, so the starting point for rigorous requirements-based
testing is already there. In fact, the existence of and the ability to test against
both the language and the library specification is one of the reasons why the C
and C++ programming languages are so ubiquitous in the developer community.
Yet, the language specification is not written as a list of requirements. A key
feature of Solid Sands’ SuperGuard test suite is that all its library tests are firmly
based on requirements derived from the ISO C language definition.

To meet the requirement that the test suite should cover both normal and failure
conditions, it should exercise each function both within its boundary conditions
and outside its boundary conditions and verify the function’s error handling. The
requirements derived from the ISO C specification to create SuperGuard include
verification of the required failure behavior defined in the specification.

Reliable evidence of there being no known errors that could lead to a violation of
safety requirements not only relies on effective requirements-based testing, it
also relies on structural code coverage for Automotive Safety Integrity Level D
(ASIL D) — the highest integrity level for automotive applications. To ensure
evidence of completeness, SuperGuard provides high structural code coverage
and high Modified Condition/Decision Coverage (MC/DC).

SuperGuard also includes the analysis and testing of equivalence classes and
boundary values, and error guessing based on the best available knowledge and
experience of a library function’s behavior.

ISO 26262 Part 6: Product Development at the Software Level
ISO 26262 Part 6 adopts a parallel approach, treating library code in the same
way as all other application code that runs on the target. Ironically, it does not
mention libraries as a separate category of code at all, which may be the reason
why the need for library qualification is often overlooked.

4 SuperGuard – Solid Sands

Qualification of the C Standard Library as detailed in ISO 26262 Part 6 is more
involved than the approach detailed in Part 8 because Part 6 addresses all phases
of software development.

Part 6, Table 7: ‘Methods for software unit verification’ includes requirements-
based testing as one of its recommendations for all ASIL levels. As described
above for ‘qualification of software components’ (ISO 26262 Part 8, Clause 12),
SuperGuard comprehensively supports requirements-based testing, although in
practice it is recommended that developers use more than one of the methods
listed in the table to verify a C Standard Library implementation.

SuperGuard also employs all the methods listed in Part 6, Table 8: ‘Methods for
deriving test cases for software unit testing’. Method 1a, ‘Analysis of
requirements’ is used to break down the C Standard Library specification into
testable requirements. The C Standard Library description is a mix of (sometimes
implicit) definitions, restrictions on the use of functions, and definitions of
function behavior. In SuperGuard, these have also been translated into testable
requirements that form the basis of the test suite, including requirements for the
handling of anomalous cases defined in the language standard.

Methods 1b, ‘Generation and analysis of equivalence classes’, and 1c, ‘Analysis of
boundary values’, relate to the partitioning of the input value domains of the
functions and are addressed in SuperGuard's test specifications, which provide
the link between the requirements and the tests.

Method 1d, ‘Error guessing based on knowledge or experience’ is based on Solid
Sands' knowledge of difficult implementation areas for the C library, and on the
collection of regression tests that have been collected since the initial
development of Solid Sands’ SuperTest compiler test and verification suite more
than 30 years ago.

In this approach, SuperGuard plays a substantial role on the right-hand side of
the V-Model for software development. In relation to ISO 26262 Part 6, Clause 9:
‘Software unit verification’, it addresses the following:

• Compliance of the standard C library implementation to its requirements

• Verification of the hardware-software interface by running the tests on

the target hardware

• Confidence in the absence of unintended functionalities by the verification

of failure cases and by monitoring code coverage

• Verification of resource requirements by running the tests on the target

hardware

5 SuperGuard – Solid Sands

How SuperGuard Tests are Developed
When implementing the requirements-based testing recommended in Part 8 and
Part 6 of the ISO 26262 functional safety standard, the main issue with the C and
C++ Standard Library specifications is that although they provide a detailed
behavioral description for each function, neither of them defines a clear set of
requirements. The necessary requirements for each function must therefore be
created from the behavioral descriptions.

The SuperGuard C Library Safety Qualification Suite incorporates the proven test
suite for the C Standard Library already included in Solid Sands’ world-leading
SuperTest compiler test and verification suite, which has tracked the (ISO)
language specifications for more than 30 years. However, SuperGuard goes much
further than SuperTest in terms of its reporting capabilities, documenting
requirements, individual tests and test results in accordance with functional
safety standards such as ISO 26262, EN 50128 and IEC 61508.

The tests in SuperGuard's test suite are designed according to the following
principles, making them suitable for a wide range of development environments.

SuperGuard tests are behavioral tests — i.e. they verify that the behavior of the
implementation complies with the library specification. Each test executes the
construct or function under test and compares the results of execution with the
expected ('model') results defined in the library specification. The test itself
reports success or failure to the test driver.

In order to check the behavior of the implementation, these tests are compiled
and executed in an execution environment, which means that the entire
toolchain, including the target processor, is involved in each test. This makes
SuperGuard suitable for hardware-in-the-loop verification of the library.

The tests for the freestanding part of the library (typically used in bare-metal
systems) require minimal resources. Most SuperGuard tests can run on systems
with less than 4K memory, making it possible to use SuperGuard on very small
embedded systems.

To implement requirements-based testing, SuperGuard provides a detailed
breakdown of the C Standard Library specifications into testable implementation
requirements together with test specifications describing how each requirement
is tested. By linking individual test execution results back to the corresponding
test specification, test requirement, and standard library function, SuperGuard
provides the full traceability needed for requirements-based testing. To provide
evidence of completeness, it provides close to 100% structural code coverage for
more than 80% of the functions, with high Modified Condition/Decision
Coverage (MC/DC). Note that this addresses the library implementation itself,
not the underlying OS layer.

6 SuperGuard – Solid Sands

An Example
Each library test in the SuperGuard suite is developed according to a consistent
methodology, illustrated by the strncpy function shown below. This is the
specification in Section 7.21.2.4 of the C99 language definition:

7.21.2.4 The strncpy function

Synopsis
1 #include <string.h>
 char * strncpy(char * restrict s1, const char * restrict s2, size_t n);

Description
2 The strncpy function copies not more than n characters (characters that

follow a null character are not copied) from the array pointed to by s2 to
the array pointed to by s1. If copying takes place between objects that
overlap, the behavior is undefined.

3 If the array pointed to by s2 is a string that is shorter than n characters,
null characters are appended to the copy in the array pointed to by s1, until
n characters in all have been written.
Returns

4 The strncpy function returns the value of s1.

The most curious point about this specification is that Paragraph 2 specifies no
lower bound of characters for strncpy() to copy. It reads: “copies not more than n
characters.” At no point does the specification require that any characters are
copied from s2 to s1. In Paragraph 3 it does state an action, namely that s1 is
padded with null characters. Taken literary, a correct implementation according
to this specification would be to just write n null characters to s1.

Yet, this is not what the function is meant to do, nor what it is expected to do. The
general understanding is that the function does copy as many as possible
characters from s2 to s1 until either the string s2 or n is exhausted. There is no
confusion about that and it appears nobody complained about this phrasing
since ANSI C89 because the same wording is still present in C18. But, to define
requirements we have to be a bit more precise.

The first step in our test development process is to extract a set of requirements
(REQs) from this description, taking into account what the function is actually
supposed to do. These are:

REQ-copystring: If s2 points to a string with a length 'l2' (as it is defined by
strlen()) that is less than n, strncpy() shall copy l2 characters, in order, from
the array s2 into the array s1.

REQ-copyn: If s2 does not point to a string with length less than n, strncpy()
shall copy the first n characters, in order, from the array s2 into the array s1.

7 SuperGuard – Solid Sands

REQ-shorter: If s2 points to a string with a length that is less than n, strncpy()
shall append null characters (‘\0’) after the copied characters in array s1 until n
characters in total have been written.

REQ-nomore: strncpy() shall not write into the target array s1 beyond the
first n characters.

REQ-nochange: strncpy() shall not modify array s2.

REQ-return: strncpy() shall return the value of s1.

The requirement REQ-nochange follows from the declaration of s2 as a
constant array, but the declaration itself does not guarantee that an
implementation of strncpy() does not write to s2.

For each of these requirements, a test specification is then developed. The test
specification defines how a test verifies that the requirement is true. A single test
specification usually leads to a number of different test cases that cover the input
and output domains of the function. The test cases are implemented by the test.
The test specification links the requirement to the tests.

For example, the test specifications for the REQ-copystring and REQ-nomore
requirements are as follows:

Test specification for REQ-copystring: Call the strncpy() function with
different values for the n parameter (including n==0) equal to and larger than
the length of the origin string. Verify that the origin string is copied into the
target array up to the terminating null character.

Test specification for REQ-nomore: For all test cases, verify that the character
with index n in the target array s1 is not modified. If that fits with the test, verify
that also no characters beyond n are modified.

In this case, the test specification REQ-nomore is implemented in the same test
file as the other tests cases for strncpy(). Since the requirement must
unconditionally hold for every call to strncpy() anyway, instead of creating new
tests for this test specification, it is implemented by simply piggybacking an
additional check on every case test for the other requirements instead of creating
new tests for it.

Dealing With Header Files and Function-like Macros
The C language throws in one more spanner to complicate the tester’s life. Which
is that not all functions in the C Standard Library are only implemented as pre-
compiled binaries. Many are also heavily dependent on information contained in
source header files.

8 SuperGuard – Solid Sands

These header files, which define things such as types, global variables, and
macros, are as much a part of the library as the (pre-compiled) library functions.
Many functions are implemented both as a real function and as a macro, and for
speed and efficiency it is common practice to use the macro implementation.
Both are tested by SuperGuard.

Unlike the corresponding binaries, function-like macros are not pre-compiled.
They are compiled by the SDK’s compiler together with the application source
code. It is therefore important that, together with other content in the header
files, they are verified for the specific use-case of a given safety-critical
application. In the C++ library, the use of macros is elevated to an even higher
level through the use of type-generic templates that only exist in the headers.

Where Requirements-based Testing Fits With ISO 26262 Part 8
Clause 12
Through these requirements-based test methodologies, SuperGuard ensures
availability of the following key elements set out in ISO 26262: Part 8, Clause
12.4.1 for a software component to be considered as qualified:

12.4.1 a) the specification of the software component

9 SuperGuard – Solid Sands

The specification of the C and C++ Standard Libraries are based on publicly
available ISO standards, with SuperGuard adding clear functional requirements
to the behavioral descriptions contained in these standards.

12.4.1 b) evidence that the software component complies with its requirements

By translating the functional requirements extracted from the library
specification’s behavioral descriptions into test specifications and test designs
and assembling the resultant tests into a comprehensive executable test suite,
SuperGuard provides evidence that an implementation of the C Standard Library
complies with the extracted requirements and hence the behavioral description.

12.4.1 c) evidence that the software component is suitable for its intended use

When SuperGuard is used to verify a C Standard Library implementation, it
creates a detailed report of the PASS/FAIL status of all tests, with full traceability
back to the functional requirements extracted from the specification’s behavioral
descriptions.

SuperGuard also meets the requirements of ISO 26262 Part 8, Clause 12,
paragraphs 12.4.2.2, 12.4.2.3 and 12.4.2.4, which are referred to in 12.4.1b
above. Clause 12.4.2.2 indicates that verification of a software component can be
done using requirements-based testing and a dedicated test suite, which is what
SuperGuard provides. It also states that the verification must “cover both normal
operating conditions and behavior in the case of failure” and “display no known
errors that may lead to a violation of safety requirements allocated to this software
component”. SuperGuard tests the functional requirements for all defined failure
behaviors stated in the ISO C language standard.
Clause 12.4.2.3 defines an additional requirement for the use of software
components in ASIL-D applications, stating that structural coverage must be
measured in order to evaluate the completeness of the test cases.

Clause 12.4.2.4 states that the verification process detailed in Clause 12 can only
be applied to an unchanged implementation of the software component. While
some developers replace library functions by their own specialized
implementations, these modifications normally only apply to a few functions.
Since the C Standard Library is highly modular and virtually all function
implementations are independent of the rest of the library, the majority of
library functions can still be verified under the provisions of Part 8, Clause 12,
allowing the application developer to focus on qualifying only those functions
that have been modified using the provisions detailed in Part 6.

Code Coverage Analysis
During construction of the SuperGuard test suite, special focus was placed on the
code coverage achieved for a mature and popular open-source C Standard

10 SuperGuard – Solid Sands

Library implementation to meet the ASIL D requirement of Clause 12.4.2.3. For
many functions in that library, SuperGuard achieves 100% coverage, in addition
to high MC/DC coverage. The areas where SuperGuard has lower coverage are
typically related to implementation-defined behavior, for which no requirements
can be derived from the language specification.

Although every library implementation is different, ultimately they all have to
handle a similar case analysis. This means that SuperGuard's high code coverage
benefits code coverage for all C Standard Library implementations.

Anomalous Cases
There are two ways SuperGuard tests handle anomalous cases. The first relates
to defined behavior resulting from an anomalous input — for example, passing a
negative number to the function sqrt() must return the value NaN (assuming IEC
60559 arithmetic). Although this is an anomalous case, the behavior of the
function is fully defined and can be verified like any other behavior.

The second relates to requirements that can be verified by the compiler. For
example, if a function must have a void return type, a test can try to use the
return value with the expectation that it will generate a compiler error. Such a
test is called an x-test in SuperGuard and the filename of these tests starts with
an x. X-Tests PASS if the compiler raises an error at compilation and FAIL if it
does not. X-Tests are never executed.

Solid Sands B.V. / Amsterdam

www.solidsands.nl

Summary and Conclusions
Safety-critical applications require software developers to do everything in their
power to ensure that their development processes, toolchains, and application
code pose no risk of injury, loss of life, the interruption of essential services, or
damage to the environment. When using third-party and/or commercial off-the-
shelf (COTS) tools and components, such as compilers and standard libraries,
developers should not assume that these tools and components are error-free, or
that pre-qualification implies that to be the case. Qualification is only truly valid
if it is carried out in precisely the same development environment and under
exactly the same use-case scenario as used in the application.

Employing the same library test suite included in Solid Sands’ SuperTest
compiler test and verification solution, its SuperGuard C Library Safety
Qualification Suite adds the traceability needed to relate the results of
requirements-based tests − the recommended method of testing in functional
safety standards such as ISO 26262 − back to the C Standard Library
specification. Full traceability is provided by breaking down the ISO C Standard
Library functional specifications into clearly defined requirements, developing
suitable test specifications to check those requirements and implementing them
in accordance with ISO 26262 recommendations. In addition, it allows software
developers to perform these tests in the same development environment, under
the same use-case conditions, and on the same target hardware used in their
application, with close to 100% structural code coverage. By generating a
comprehensive qualification report tailored to the needs of ISO 26262
certification organizations, SuperGuard alleviates much of the burden of
demonstrating the integrity of library components used in safety-critical
applications.

Proprietary information Solid Sands B.V. All Rights Reserved
(c) Copyright 2021 by Solid Sands B.V., Amsterdam, The Netherlands

SuperTest™ and SuperGuard™ are trademarks of Solid Sands B.V., Amsterdam, The Netherlands

