The Day that GNU-C++ -Os Broke

We spent a good day of debugging a few of our C++ tests before a pattern emerged. We
are working on a project to support freestanding C and C++ environments with the
SuperTest™ test and validation suite for C and C++ compilers. A freestanding
environment is defined to support only a subset of the C and C++ libraries. Its goal is to
allow applications to run on targets that do not have an extensive run-time system like a
proper OS. Instead, it allows programs to run on 'bare-metal’. This is useful for all kinds
of embedded applications.

One of the goals in this project is to minimize the memory requirements of the
SuperTest, so we use the compiler with the memory optimization option -0s.

Several C++ tests, related to exception handling and inheritance, suddenly failed in the
new freestanding configuration.

When tests fail like this, the first thing to suspect is our own changes. After all, the
compiler used is the default g++ compiler on a fully up-to-date x86 Ubuntu environment.
Many thousands (millions?) of mission-critical systems use GNU-C++ and Ubuntu. Space-
X, just to name a high-profile example, uses C++ and Linux on x86 in their rockets too
(according to https://www.rankred.com/what-hardware-software-does-spacex-use-to-

power-its-rockets/).

Here is one such test. Yes, we know this is not nice C++, but we are not in the business of
writing nice C++. Our job is to go near the edge of the language specification to verify the
correct behavior of its implementation.

#include <cassert>

class A {
virtual void £(){};
public:
int x;
A(int in): x(in) {};
};

class B: public A {
public:
int y;
B(int in) :A(in-1), y(in) {};

Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 3120244 0199 /KvK 61176249
www.solidsands.nl

https://www.rankred.com/what-hardware-software-does-spacex-use-to-power-its-rockets/
https://www.rankred.com/what-hardware-software-does-spacex-use-to-power-its-rockets/

int test(void) {
int res;
B b(2);
A* bp = &b;
void* vp = dynamic_cast<void*>(bp) ;
if (((A*)vp)->x ==
&& ((B*) (A%)vp)->y ==
) |
return 1; // PASS
} else {
return 0; // FAIL
}

int main (void) {
assert (test ());

The code is not complicated, but it has some unnecessary, though well-defined, type-
casting. Class A is inherited by class B and both have their own instance variable, x and y
respectively. The instantiation of an object of class B, in the second line of the function
test, initializes these variables with the values 1 and 2. After several type casts, the if
statement verifies these values.

Let us first admire the beauty of the x86-64 code generated by g++ for the function
test() with the option -01:

test():
mov DWORD PTR [rsp-8], 1
mov DWORD PTR [rsp-4], 2
mov rdx, QWORD PTR vtable for B[rip]
movabs rax, 8589934593
cmp QWORD PTR [rsp-8+rdx], rax
sete al
movzx eax, al
retA::£():
rep ret

The compiler knows the layout of the object of type B. With the first two moves, it sets
the values of the two variables x and y. Then it compares the values of object b’s fields
with the 64-bit immediate 8589934593. In hexadecimal, this value is easier to
understand: 0x200000001. The compiler does two comparisons of 32-bit values in one
64-bit comparison! That is a clever move. So far so good.

But now compile the code with -Os, for size optimization. The generated code becomes:

test () :
mov rdx, QWORD PTR vtable for B[rip]
mov DWORD PTR [rsp-8], 1
movabs rax, 8589934593
cmp QWORD PTR [rsp-8+rdx], rax

sete al
movzx eax, al
ret

Do you see what is missing? Somehow, the compiler has forgotten to initialize b's
variable y to 2! And thus our test-program fails at the assert.

This is a serious error. Due to the optimization that turns two comparisons into one, the
compiler ‘forgets’ that the y field of the object b is used. A def-use analysis after the
optimization of the two comparisons then sees no use of y. Therefore the compiler
concludes that the initialization of the field y is redundant, and removes it. Is this
behavior limited to comparison optimization in combination with some liberal type-
casting? Perhaps, but there is no guarantee for that.

Itis not the only error. There are also errors in the generated exception handling code
when -0s is used. The version of GNU-C shown here is 7.3.0 because that is the current
version on Ubuntu. We tried different versions of GNU-C, also for ARM64 targets and not
Ubuntu related, and they are all affected. We must conclude that it is not safe to use g++
in combination with the -Os option for 64-bit targets.

Compiler developers run many tests to prevent that errors like these slip through. But
compilers are complicated and they have so many configuration options that no
compiler supplier can state upfront that your particular use case is verified.

If your application domain is mission-critical or even safety-critical, you need to set up
compiler validation for the compiler and for the use cases that are specific to you. If that
is beyond your scope, then at least verify that your compiler supplier uses SuperTest.
SuperTest provides you with a better chance of staying ahead of compiler errors than
any other method that we know of. Let's hope that Space-X does not use g++ with the
-Os option.

(c) Copyright 2019 by Solid Sands B.V., Amsterdam, the Netherlands
SuperTest™ is a trademark of Solid Sands B.V., Amsterdam, The Netherlands.

