

Future-proofing the GCC compiler for an
automotive grade microcontroller

Author Manfred Kreutzer – ABIX
Co-author Marcel Beemster - Solid Sands

ABIX & the project
ABIX is a service provider for the development of software development tools in the

embedded and IoT field. In a current project ABIX is tasked with upgrading and

improving the GCC compiler for the Belgian company Melexis, a global supplier of

microelectronic semiconductor solutions.

The customer & its products
Melexis develops a family of efficient 16-bit RISC-type microcontrollers for a broad

variety of applications in the automotive and mechatronic sectors ranging from tire

pressure monitoring sensors to BLCD motor controllers. The microcontrollers’

instruction sets, register files and co-processors are customized to meet the

requirements of these application specific purposes.

The compiler & the expertise
The GCC compiler was selected as the compiler of choice many years ago. It was adapted

to meet the characteristics of this 16-bit architecture family. Special attention was paid

to the efficient utilization of the register file, where smaller registers can be combined to

broader registers, and to size optimization of the target code to enable small memory

footprints and reduce power consumption.

GCC has now been successfully used for several years for this microcontroller family but

with the release of GCC version 10 in 2020 the decision to upgrade was made. ABIX has

been entrusted to execute this project due to the many years of experience the ABIX

team has gathered in designing and developing compiler frameworks and compiler

extensions and due to its expertise with the creation of GCC and LLVM compiler

extensions for internationally renowned customers from the RISC and DSP

microprocessor IP sectors.

Challenges
For this upgrade project there are three major challenges to deal with: First, it needs to

be ensured that the upgraded compiler is as robust, trustworthy, and performant as the

previous version that the customers relied upon for many years. Second, when deciding

2 Future-proofing the GCC compiler for an automotive grade microcontroller

for a major upgrade it is a good idea to make use of the latest features available in the

compiler framework, in this case the GCC register allocator. And third, it is always

worthwhile to try and squeeze more performance from the latest technologies, in this

case to optimize the size of the generated binaries.

Horses for courses
An adequate test suite is paramount to make an endeavor like this as trouble-free as

possible for the developer and customer. It must ensure there are no regressions over

the previous version of the compiler. The test suite must also guarantee that despite

numerous changes in the compiler source code the resulting product will meet

industrial strength and robustness criteria. With the ABIX staff having successfully used

SuperTest for proprietary compiler developments and for compiler testing as a service

for many years, SuperTest is the natural choice here. SuperTest is used to cover the

lion’s share of language (i.e. C) and functionality (e.g. register allocation) tests. Selected

tests from the GCC Torture test suite as well as a specific, customized regression test

suite are used to complement the test landscape in this project for best coverage.

The test scenario — fair weather
Explaining about how SuperTest has helped to improve and ensure the quality of the

upgraded compiler requires a brief review of the test scenario: The compiler, including

its utilities, libraries and auxiliary inventory, is designed to be used with Windows and

Linux hosts. It targets three microprocessor family flavors and it needs to be tested for

different optimization levels (i.e. code size and execution speed). Some optional

compiler results, like the output of debug information, are also captured in the test cycle.

Usually a compiler binary build is provided to the customer on a weekly basis. It

includes an assessable set of problem fixes, updates or improvements. The weekly build

is not intended for release but to assess the overall quality of the compiler, its

completeness and the effectiveness of problem fixes. A dedicated review team with

compiler engineers, field application engineers, and software developers assigned by the

customer is taking care of the assessment cycle. The weekly builds for the customer,

including the compiler binary builds, need to pass a corresponding test cycle based on

SuperTest and the auxiliary test suites. The SuperTest test cycle covers 9 major test

varieties with about 4.000 test programs each. The actual number of tests varies

depending on the capabilities of the target architecture. For instance, floating point tests

are excluded if floating point is not supported by the target architecture. SuperTest

comes with test sets that allow for easy exclusion of such tests.

Compliance tests are first compiled and then executed to verify that their behavior

corresponds to that expected according to the C standard. The compilation pass of every

test case provides initial and essential feedback regarding the overall quality of the

3 Future-proofing the GCC compiler for an automotive grade microcontroller

current compiler build. Test execution is supported by a simulation tool for the

corresponding target platform. The simulation run of the test case binaries adds

confidence about the correctness of the compilation from start to finish.

Reaching a verdict
The SuperTest built-in utilities to capture and summarize statistical data about the test

runs are extremely helpful when it comes to the evaluation of a test cycle. As a weekly

build cycle consists of a week of new work, it is expedient that test evaluation overhead

is avoided. If needed, it allows a possible fix and second test cycle, or an early delivery to

the customer. The SuperTest facilities provide a neat overview of the test results and

allow for a quick assessment. It is straightforward to compare current test results with

those of a previous test run and with the test results of an approved reference version. It

allows us to conclude quickly if a build is created that is suitable for delivery.

Common errors – language!
An outstanding feature of SuperTest is to detect and uncover deviations from the C

language standard as implemented by the compiler. Although catastrophic errors are

not expected often in a mainstream variant of GCC, the situation is different when GCC is

customized for a specific target architecture that is not in the focus of the developer

community. Individual adaptations for specific architectures are affecting essential

language attributes such as the scope and definition of data types, and thus most likely

bring their own definitions within the bounds of possibility according to C standard. The

same applies when it comes to common infrastructure, as for instance calling

conventions, or even when architecture specific language extensions are being added.

For these test scenarios SuperTest is the headstone that gives you assurance that the

compiler is sound.

Forensics — bad weather
Severe errors that are found during a test cycle often become manifest by an internal

compiler error message like “internal compiler error: Segmentation fault.” It requires

very good understanding of the inner workings of a compiler to even find an entry point

to start investigating the problem cause from this. However, reasons for internal

compiler errors and crashes are manifold – and for sure you would not want your

customers to encounter any of these. In the following sections we provide some extracts.

Compiler rules
The GCC compiler is constructed around rules that tell it what patterns to look for when

analyzing the input program and how to transform it into machine code. These analyses

are performed on different internal representations of the actual source code.

4 Future-proofing the GCC compiler for an automotive grade microcontroller

Well-known formats for GCC are the “intermediate representation” (IR) and the

“register transfer level” (RTL) representation. They enable different perspectives and

operations for transforming and optimizing program code.

A GCC compiler engineer develops rules to analyze, break down, and transform the IR,

and to optimize it for a specific target architecture. This is implemented by rules that

match with patterns in the IR. GCC has non-trivial rule formats. It goes without saying

that there is no better guidance for a compiler engineer than strong experience and the

study of other compiler implementations. The shape of the rules and their sequencing is

almost artistic craftwork and it is undeniably prone to mistakes. Even worse, these

mistakes only just manifest in very specific paths through a compiler’s control or data

flow. The options to avoid these kind of problems are limited. Apart from entrusting rule

design only to distinguished engineers and reviewing their contributions by an equally

distinguished group of peer developers, the best option is to test. Test — extensively and

in abundance. This in turn requires a test suite with a huge, heterogeneous spectrum of

different test cases, like SuperTest. Although a test suite can hardly be designed to

provide test cases matching specific rules that a compiler engineer might have created,

SuperTest provides a broad variety of source code constructs which in turn trigger

corresponding analyses and transformation rules, no matter how they are designed in

detail. That way SuperTest also helps to uncover the most complex bugs that can occur

in a compiler tool.

Give me more registers
“Internal compiler error: in extract_constrain_insn, at recog.c:2213”. Does that sound

more informative than “segmentation fault”? This is the manifestation of a problem with

register allocation. The challenge for register allocation is to place program variables

into machine registers. The more active variables you have in the source code and the

fewer registers the target architecture has, the more difficult this is for the compiler.

SuperTest provides a rich set of variable manipulations that exploit the potential of the

source code and thus constitute challenges for the compiler’s register allocation.

However, beyond detecting the error, the compiler engineer is still challenged with

finding the actual root of the problem. That is generally due to the branched and

interconnected nature of analyses, rules, transformations, and optimizations in the

compiler, and the many paths through this network.

Oh, your libraries
Is a test suite limited to language conformity, data types, calling conventions, register

handling, etc.? Not at all. For a C compiler it is very common and also good practice to

provide a set of libraries whose functions have been specifically optimized for the

respective target architecture. This is achieved by using knowledge about how the

5 Future-proofing the GCC compiler for an automotive grade microcontroller

respective compiler can best optimize particular source code constructs. It can use inline

assembler code and language extensions (e.g. special data types) that perform particular

operations highly efficiently. An example is the C function to dynamically allocate and

reserve contiguous blocks of memory - “malloc()”. Depending on the memory size and

alignment attributes of the target architecture, the parameters designed for the malloc

function and the way it is implemented, this function might be highly efficient, inefficient

or even defective in various ways. Applying SuperTest allows you to detect errors in the

implementation of library functions early on, again facilitated by a huge variety of test

cases that challenge the library implementation. The SuperTest size recording and test

run comparison features are extremely helpful to detect code size inefficiencies. Selected

test cases can be carried out while concurrently recording statistical information about

code size. The collected data is then used in a subsequent comparison pass where the

results are contrasted with either a previous test run or with the results of a reference

test pass.

Wrong results though compilation passed?
When evaluating the results of a test cycle the compilation pass data might look all right

but now there are fails in the test case execution pass. What might be the reasons for

that? There are more obvious reasons and more far-reaching ones. One reason would be

numerical precision when it comes to the comparison of floating point values for test

case verification (which is at least not a compiler bug rather than a matter of correct

definitions with regard to the target architecture). Another reason would be

implementation defined behavior beyond language standards. That includes topics as

variables allocation order, alignment, and initialization (of e.g. structures and bit-fields)

which might be responsible for incorrect run-time results.

SuperTest also contains test cases that pinpoint deficits that are not related to the

current target. For example, GCC’s aggregate structure initialization is not compliant

with the C standard for partially overwritten fields. Even if it is not possible to upgrade

to a fixed compiler version, it is important to know and document such errors.

The time it takes
When ABIX performs a full test cycle for the referred project, approximately a full day

passes until the results are available for all 36.000 test executions. SuperTest’s test

driver and report tools are very efficient and use only a small part of this time. The

overall cycle time depends largely on the following aspects: The number of host

platforms on which the tests shall be executed, the compilers and utilities used, and the

method used to perform the run-time tests. SuperTest has a number of options to

parallelize and speed up execution, but eventually there are some bottlenecks in every

setup. A critical component in that regard is the tool used to perform the run-time tests.

Solid Sands B.V. / Amsterdam
www.solidsands.nl

For instance, many simulators cannot run multi-instance, and that forces the

serialization of test execution. Although test cases in SuperTest are slim and

streamlined, the performance of the simulation and/or run-time execution tool adds

significantly to the overall processing time. One way to improve on bottlenecks like this

is to distribute the test cycle to multiple real or virtual machines.

The big picture
All of the aforementioned portrayals might appear like individual considerations but are

actually reflecting ABIX’ experiences gathered during a challenging GCC compiler

upgrade and improvement project. A project like this requires two primary ingredients,

the experts knowing their soil – who ABIX can provide for your compiler project, and a

comprehensive, industrial-strength test suite that includes all the knowledge about why,

how, and where compilers might swerve from the racing line – for which we highly

recommend Solid Sands’ SuperTest. SuperTest leaves almost nothing to chance and has

been an essential tool to help us create a robust and reliable compiler for our customers.

(c) Copyright 2021 by Solid Sands B.V., Amsterdam, the Netherlands
SuperTest™ is a trademark of Solid Sands B.V., Amsterdam, the Netherlands

All other trademarks herein are the property of their respective owners

