
1

Learning from Math Library Testng for C
Marcel Beemster – Solid Sands

Introduction
In the process of improving SuperTest, I recently dived into its math library
testing. Turns out there were some interesting observations to make. I have
summarized them here in four lessons. The take-away is that our intuition

about real numbers does not translate directly to floating point
computations. When working with floating point, it is essential to have a
model of its accuracy in mind. This white paper is my attempt to capture

some intuition about floating point computations.

The fun thing about maintaining and improving a generic test suite such as SuperTest is
that it encompasses so many special areas to know about. Math library testing is
definitely one of them.

In my endeavours, I learned four new things:

 all binary floating point numbers have an accurate and finite decimal
representation; but not the other way around

 there is a fun way to double the accurate number of digits of Pi using a trivial
equation

 current implementations of the sine, cosine and tangent functions are crazy
accurate

 that crazy accuracy serves no useful purpose

Some basic background: the C math library uses fixed size floating point numbers for its
computing. Floating point ("FP") numbers have useful properties: they can represent
very large and very small numbers, and their relative accuracy over the FP-domain is
about the same everywhere. They also have a very bad property: a floating point
number is almost always an approximation of the real value that you want to represent
because FP numbers are just dots along the real number line. The values between the
dots cannot be represented accurately by an FP number. Close to zero, there are very
many dots. For very big values, the dots are getting sparse, with large gaps between
them.

The size of the gap between two dots is determined by the number of bits used in the
fractional part of the FP representation. The other part, the exponent, determines where
the fractional point is placed. More fractional bits means smaller gaps. The fractional
part is commonly called the mantissa.

Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

2

When you have a value that sits between two such dots on the number line, a good FP
implementation chooses a nearby dot to represent that value. By choosing the nearest
dot, you are never more than half a gap wrong. The technical term for that is that the
best accuracy you can ever hope to achieve on average is 0.5 ULP, where ULP stands for
"Units in the Last Place" (where, in the usual base-2 representation, you can also read
bit instead of unit).

The First Lesson: Convertng Between Binary and Decimal

Another nasty property of FP: in a binary (base-2) representation of FP numbers, used
by computers, the dots on the FP number line are in a different position than the dots in
a decimal (base-10) representation that is used by humans. Some dots coincide: for
small whole numbers and fractions of 2, but many do not. That means you have to be
careful with conversions: you may drop some “ULP".

But we can be more accurate than that:
 Every finite binary (base-2) FP number can be represented by a finite base-10

number. This is because 2 shares a prime factor with 10.
 But not every finite base-10 number can be represented by a finite binary

number. That is because 5 (the other prime factor of 10) is relative prime to 2.

Here is one way to understand this. The following table lists the conversion from binary
fractional numbers (left) to decimal fractions (right):

Binary Decimal
0.1 0.5
0.01 0.25
0.001 0.125
0.0001 0.0625

The table goes on: for every such 1-bit fraction in binary notation, there is a finite
decimal fraction. Since every multi-bit fraction in binary notation is the addition of 1-bit
fractions, their sum in decimal notation stays finite.

But it does not work in the other direction:
Decimal Binary
0.1 0.000110011001100....

So the binary notation for 1/10th is not a finite fractional number. Its last four bits
(1100) repeat endlessly.

Corollary 1: Be careful when converting decimal numbers to (finite) binary FP
numbers.

Corollary 2: For an accurate decimal representation of a binary FP number, you may
need about as many digits as you have bits in the mantissa.

Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

3

The Second Lesson: Doubling the Digits of �
The second thing I learned came from the Random ASCII blog:

https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-
bounds-by-1-3-quintillion/

It refers to the following handy equation:

Pi = Pi + sin(Pi)

That appears trivial because in proper maths, sin(Pi) equals zero. But in the computer,
Pi is one of those values that falls in the gaps between the dots on the number line. In
the machine, it is rounded to a nearby dot. Let's call the nearest-dot-approximation of Pi
M_Pi (Machine-Pi). So if you compute sin(M_Pi), you should NOT get zero as a result
because M_Pi is not equal to Pi.

Here are a few lines of C-code to type in, compile and execute:

#include <stdio.h>
#include <math.h>
#define M_Pi 3.1415926535897932384626433832795
int main (void) {
 printf ("M_Pi : %.31f\n", M_Pi);
 printf ("sin(M_Pi): %.31f\n", sin (M_Pi));
 printf ("Real Pi : 3.1415926535897932384626433832795...\n");
 return 0;
}

The first two lines print M_Pi and sin(M_Pi), the two right side components of the
equation. Notice that the printed M_Pi is different from its definition: the definition is far
more accurate that the 64-bit FP approximation of the machine. The third line prints
the first 32 digits of the real value of Pi that I got from:

https://www.wolframalpha.com/

On a computer with 64-bit double precision FP, the program's output looks like this:

M_Pi : 3.1415926535897931159979634685442
sin(M_Pi): 0.0000000000000001224646799147353
Real Pi : 3.1415926535897932384626433832795...

Comparing the first and the third lines reveals that the FP representation is accurate up
to the digits "...9793", or 15 digits after the dot. That is about the limit for a 64-bit FP
representation. What about the other digits after 9793? Remember that this is the base-
10 representation of what is a base-2 value in the computer. So the additional 16 bits
are not random: they are accurately representing the 64-bit base-2 number for M_Pi.

The second line is not zero, because M_Pi is not exactly Pi. Thanks to the wonders of FP
arithmetic, it is a number very close to zero. Now add the first two lines and compare to

Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

https://www.wolframalpha.com/
https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/
https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/

4

the third: surprise! An exact match. So with this almost trivial sum you can get your
computer to produce the first 32 digits of Pi, while its FP arithmetic has a precision of
just 16 digits.

One caveat: this only works if you have a really good implementation of the sin()
function. The machine used, running a modern 64-bit Linux OS, has that.

In the figure above an extremely zoomed-in part of the sine function is shown around
the X-axis value of Pi. The two yellow dots are the nearest points on the number line
that are representable by 64-bit floating point values. They are 1 ULP apart, which at
this point on the X-axis, is about 10-17.

The explanation of why the 32-digit addition works has two ingredients. The first
ingredient is simple maths: close to Pi, the sine function is almost equal to a straight line
at an angle of 45 degrees, see figure. So the distance from a point on the number line to
Pi in the X-direction is equal to the distance to the straight line in the Y-direction, see the
even-sided red triangle. This vertical distance is sin(M_Pi), which we have added to
M_Pi in the X direction. And that got us 16 digits closer to real Pi.

The second ingredient is more tricky: it requires the understanding that the density of
the floating point field is much higher along the Y-axis than on the X-axis. In the figure,
this is represented (poorly) by the density of horizontal lines on the left side. In reality,
the lines are much closer together. On the X-axis around Pi, the value of 1 ULP is in the
order of 10-17. On the Y-axis, closest to zero, 1 ULP is in the order of a mind-bogglingly
small 10-300. Around sin(M_PI), the density is much lower, but 1 ULP there is still about

Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

5

10-33. So, the trick is that near zero, the value of sin(M_PI) can be approximated 16
digits more precisely than the value of M_PI itself.

The Third Lesson: Cosine is Crazy Accurate for Large x

My third discovery came when writing tests for the cos() function in the C-library. I
found that the results of the tests were much more accurate than I had anticipated to be
possible.

A reasonable expectation is that the computed value of cos(x) is only accurate to about
1 ULP in the range from -2 Pi to Pi. This is about as good as it gets because 1 ULP means
that only the last bit is not accurate due to the rounding from the real value to the
closest FP-dot on the number line.

A surprise came when I looked at the accuracy of cos(x) for a very large value of x: 10 to
the power 100. It turns out that the cosine function is accurate to about 1 ULP also for
that value! Trying some more big values revealed that that was no coincidence: their
computed cosine values were all eerily accurate.

Like sine, the cosine function is a periodic function that repeats itself every 2 Pi. This
means that cos(x) = cos (n*2*Pi + x) for all whole numbers n. The cosine library
implementation uses this property so that it only needs an approximation function that
is accurate between 0 and 2 Pi. All values outside of the range 0 to 2 Pi are mapped into
that range by computing the modulo of x divided by 2 Pi. But here lies the problem. To
compute an accurate modulo value of a hundred digit number, you need a value of Pi
that is accurate to hundred digits. As we have seen before, the FP value M_Pi has only
about 16 accurate digits. With that precision, the error would have a magnitude of 10 to
the power 84: more than enough to make the outcome about random.

In order to explain how the cosine of a hundred digit number can still be so accurate,
let’s take a look at the implementation. Turns out we have to thank the clever engineers
of Sun Microsystem for this, and their bosses for making the library open source. The so
called range reduction part of the cosine function adapts itself to the size (magnitude) of
the value of x. The implementation indeed knows almost 500 digits of Pi, and will use
them when necessary. These computations are not simply done in 64-bit double
arithmetic, but use successive refinement to get the modulo right. You can look at the
sources here:

https://github.com/bminor/newlib/blob/master/newlib/libm/math/e_rem_pio2.c

The Fourth Lesson: Absolute Versus Relatve Error

So now we do have amazingly accurate FP results for cos(x) for very large values of x.
But is that accuracy useful? I argue it is not, and will even state that I think that that
accuracy can be harmful.

Here is my reasoning: by the time you work with numbers as large as 10 to the power
100, the FP dots on the number line will be very sparse. Of those hundred digits, only

Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

https://github.com/bminor/newlib/blob/master/newlib/libm/math/e_rem_pio2.c

6

the first sixteen or so are accurate. This means that the space between FP-dots on the
number line in this region is in the order of 10 to the power 84. So in this region, the
size of a 1 ULP error is 10 to the power 84. That is huge, even compared to the number
of atoms in the observable universe (10 to the power 82 by some estimates). And in that
empty space between dots, the cosine function makes a lot of waves. That means that
when you are computing with values in this region, a relatively 'tiny' 1 ULP error in the
input x is going to result in a completely random value of cos(x). It does not matter that
that value is accurate to 16 decimal digits -- if the input is rounded by even the tiniest
amount, cos(x) is going to produce 16 accurate but totally useless digits because the
other 84 digits of the input are incorrect.

Here is a more mundane example:

#include <stdio.h>
#include <math.h>
#define M_Pi 3.1415926535897932384626433832795
int main (void) {
 printf ("%.16g\n", sin (355.0));
 printf ("%.16g\n", sin (355.0 + 2*M_Pi));
 return 0;
}

Applying the math identity sin (x) = sin (x + 2Pi) would make you believe that the
output from the two print statements should be very close to equal. Right...?

.....Wrong. Here is what it prints on my machine:

-3.014435335948845e-05
-3.014435333792724e-05
 ^

The two already differ in the 10th decimal. That seems like a big difference given that
the sin(355) is computed accurately to 16 digits, 355+2*M_Pi is computed accurately
to 16 digits, and sin(355+2*M_Pi) is computed accurately to 16 digits. So why are the
results different already after 10 decimals?

The reason is that sin(x) is very sensitive to the accuracy of its input when its result
value is close to zero. Not by accident, with x=355 this is the case. (Note that 355/113 is
a fair approximation of Pi to six accurate digits.) As before, around a result value of zero,
the sine function is close to diagonal. This means that the absolute value of an error in its
input will result in a similar absolute error value in its output. The input is accurate to
about 16 digits. With 355, that is about 13 digits after the decimal point. Let's put that
together with the result value (E for inaccurate digits):

355.0000000000000EEEEEE
 0.0000301443533EEEEEE (negative)

The E-digits match up precisely. Similarly, the input value 355+2*M_Pi is first rounded
to the nearest dot on the FP number line before it is passed to the sine function. Thus, it
does not have more than 13 accurate digits after the decimal point, and the result value

Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

7

also has no more than 13 accurate digits after the decimal point. Around 355, the dots
on FP number line are just too sparse to more accurately represent the input values.

Corollary: when working with the sine function in a computer program, the result will
not be more accurate that the absolute error in its input value. For input value larger
than 10 to the power 16, the absolute error is in the order of 1 and more, and the sine
function is useless for practical purposes. (Yet still eerily accurate...)

So How Does This Relate to SuperTest?

As stated in the beginning, this quest began with making improvements to SuperTest's
Math testing. And so we did. The improved math library testing is now part of
SuperTest, accurate to the last ULP if that is the standard you want to compare to. But
your library does not have to be that accurate. The C language specification does not put
accuracy requirements on the math library. In an embedded application, you may not
want and may not need a cosine that computes with 500 digits of Pi. It may be too slow
or too large. This paper should help with defining reasonable bounds for the accuracy
that your application requires.

(c) Copyright 2018 by Solid Sands B.V., Amsterdam, the Netherlands
SuperTest™ is a trademark of Solid Sands B.V., Amsterdam, The Netherlands.

Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

