

 Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

1

How a Rogue Optimization Breaks
C11 Memory Consistency

A compiler transformation that caches a global variable

introduces a data race

Abstract

A widely used compiler optimization contains a serious error that breaks C11's memory
consistency model by introducing a shared memory data race. Although the
optimization is perfectly valid for single-threaded programs, it has the potential to break
multi-threaded programs based on both C11’s thread model and the commonly used
pthread model.

By Marcel Beemster

(c) Copyright 2016 by Solid Sands B.V., Amsterdam, the Netherlands
SuperTest™ is a trademark of Solid Sands B.V., Amsterdam, The Netherlands

 Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

2

The Test Program

The error is easy to invoke with the following simple test program (caveat: nothing
related to memory consistency is 'easy' or 'simple'):

 #include <stdlib.h>

 #include <stdio.h>

 #include <pthread.h>

 #define RANGE 10000

 static int sharedVar;

 static void *finder (void *fromIndexp) {

 int fromVal = *(int *)fromIndexp;

 for (unsigned int i = fromVal; i < fromVal+RANGE; i++) {

 if (i * i == 81) { /* Only true once for T1 */

 sharedVar = i; /* 2nd write to sharedVar by T1 */

 }

 }

 return NULL;

 }

 static void multiFinder (int i) {

 pthread_t t2;

 int argT1 = 0;

 int argT2 = RANGE;

 sharedVar = 0; /* First write to sharedVar */

 pthread_create (&t2, NULL, &finder, &argT2); /* Start T2 */

 finder (&argT1); /* T1 and T2 in parallel here */

 pthread_join (t2, NULL);/* T2 terminated */

 if (sharedVar != 9) { /* Final read of sharedVar by T1 */

 printf ("Loop %d, FAIL: 9 != %d\n", i, sharedVar);

 exit (1);

 }

 }

 int main (void) {

 for (int i = 0 ; i < 100 ; i++) {

 multiFinder (i);

 }

 printf ("Success\n");

 return 0;

 }

After initialization of global variable sharedVar by the main thread (T1), the program
creates a new thread T2. T2 executes, in parallel with T1, the same function as T1 but
with a different argument. Only T1 writes to sharedVar while the two execute in
parallel, and neither thread reads from sharedVar. This means there is no data race.

T1 waits with a 'join' for T2 to terminate. After that T1 verifies the expected value of
sharedVar. If this fails, the program terminates with an error.

 Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

3

All of the actions before are in a loop that continues until a failure of the expected value
check occurs, or 100 iterations did not fail. If the incorrect optimization is present,
failure typically appears within 5 iterations.

To demonstrate, compile the program with optimization -O1 on a GGC-4 compiler, for
example gcc-4.9 (check the compiler version with gcc –v; install 4.9 on Linux using
sudo apt-get install gcc-4.9), and run it. Note that -std=c11 is not

required to trigger the error, but is technically required to provide C11’s memory
consistency model:

 gcc-4.9 -O1 -std=c11 test.c -lpthread && ./a.out

There is good chance you will get this output (perhaps at a different iteration):

 Loop 2, FAIL: 9 != 0

You can run it more than once and get different iterations reported. The question is:
Why did thread T1 not write to the shared variable in that iteration?

Let us first check that the program can work as intended by compiling it without
optimization:

 gcc-4.9 -std=c11 test.c -lpthread && ./a.out

The resulting output is:

 Success

The error is the result of a rogue compiler optimization of the loop in the function
finder. This is the reasoning behind the compiler's optimization:

- A global variable sharedVar is written inside the loop
- Writing to global variables is expensive
- Repeatedly writing to the same global variable in a loop is more expensive
- Inside a loop, the write to a global variable can be cached in a register so that

multiple expensive writes are avoided
 - Let's cache sharedVar in a register!

And this is the compiler transformation that is applied. Original code:

 for (i = fromVal; i < fromVal + MAXITERS; i++) {

 if (i*i == 81) { sharedVar = i; }

 }

Optimized code:
 cachedVal = sharedVar;

 for (i = fromVal; i < fromVal + MAXITERS; i++) {

 if (i*i == 81) { cachedVal = i; }

 }

 sharedVar = cachedVal;

 Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

4

This is a useful optimization. It is perfectly valid if that code would run in a sequential
program. It would also be valid if sharedVar would be written at least once inside the
loop. But that is not the case in the test program: it is multi-threaded and the loop in
thread T2 does NOT write to sharedVar.

Before the transformation, only thread T1 writes exactly one time to sharedVar in the

loop. After the optimization, both threads simultaneously read from and write to
sharedVar:

THE COMPILER HAS INTRODUCED A DATA RACE!

With that data race after optimization, the following sequence (schedule) of events
erases the write to sharedVar by T1. Other schedules are possible and not all of them
result in a failure:

 T2: cachedVal = sharedVar; // cachedVal (of T2) = -1

 T1: cachedVal = sharedVar; // cachedVal (of T1) = -1
 T1: cachedVal = i; // cachedVal (of T1) = 9
 T1: sharedVar = cachedVal; // sharedVar = 9
 T2: sharedVar = cachedVal; // sharedVar = -1 (!)

As you can see, the write-back of the cached value by T2 has erased the expected value
of 9 in sharedVar. The reason is that the compiler optimization did not anticipate the
possibility that the shared variable is not written at all in the loop.

One may question if the compiler is wrong or right to perform the optimization. Clearly
the program is not working as intended, but should the developer not have been more
careful with the handling of the shared variable? That is a valid question to which the
answer is 'NO': the program is correct and the compiler is wrong. More on this below.

A correct optimization is the following:

 hasWritten = 0;

 for (i = fromVal; i < fromVal + MAXITERS; i++) {

 if (i*i == 81) {cachedVal = i; hasWritten = 1;}

 }

 if (hasWritten == 1) {sharedVar = cachedVal;}

In this way, the write is protected by a condition if it did not happen in the loop. At the
same time, no initial read is necessary any more. This is indeed the code that GCC-5
produces.

Lessons

An important lesson from this error is that there exist optimizations that are perfectly
acceptable in sequential programs, but that are incorrect in parallel or multi-threaded
programs. In principle this means that a compiler has more freedom to optimize a
sequential program than a multi-threaded program.

 Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

5

In fact, the C11 standard warns about such incorrect optimizations in NOTE 13 in
Section C11:5.1.2.4p27:

Compiler transformations that introduce assignments to a potentially shared
memory location that would not be modified by the abstract machine are generally
precluded by this standard, since such an assignment might overwrite another
assignment by a different thread in cases in which an abstract machine execution
would not have encountered a data race.

A second lesson is that testing for memory consistency is non-trivial. Almost by
definition the test has to be multi-threaded and any errors have a non-deterministic
behavior.

Thirdly, although the example demonstrates with GCC-4, the optimization can be
present in other compilers. Developers that rely on shared memory consistency should
check their development tools.

Background: Memory Consistency Models

A memory consistency model of a programming language or system is important when
multiple threads communicate via shared memory. The memory consistency model
defines what programmers can expect from variables (objects in shared memory) that
are shared between multiple threads.

There are many different memory consistency models, in particular at the level of
hardware. Their differences can have a huge impact on the possible style of multi-
threaded programming.

The easiest to understand model is that of sequential consistency. With sequential
consistency, all threads observe memory transactions in the same order and they all
have the same view of the memory. It is needed to implement "Dekker's Algorithm" to
synchronize between threads without hardware synchronization instructions.
Sequential consistency is the easiest to understand but the hardest to implement in
multi-processor hardware. In a multi-level cache architecture, reads and writes to
memory have to be managed judiciously and can be localized (which is necessary for
efficiency) only when they are not shared between processors. The Intel x86's Total
Store Order model comes close to sequential consistency, but it is not quite the same
(http://blog.regehr.org/archives/898).

Sequential consistency is costly to implement in hardware in terms of speed and power
efficiency. So, most multi-processor hardware architectures (such as the ARM
architecture) choose a much weaker memory consistency model that allows caching of
reads and writes without having to check with remote caches. Instead, the shared
memory is only synchronized when an explicit memory synchronization action is
performed, such as a cache flush.

 Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

6

To implement a sequential memory abstraction on top of a weak memory consistency
model is possible but very performance inefficient because it requires many explicit
memory synchronization operations.

Therefore, C11 (and C++11) have adopted a 'weak memory consistency model'. It makes
it possible to efficiently implement C11 on top of architectures that support only weak
consistency models. The price to be paid is that developers cannot assume sequential
consistency and cannot write multi-threaded programs that contain data races. A data
race occurs when two threads run in parallel without some form of synchronization and
one of them writes a shared variable, while the other reads or writes the same shared
variable.

You may ask how shared variables are still useful for communication when this is not
allowed. The answer is in the clause 'without some form of synchronization'. If there is
explicit synchronization between the two threads, then one thread can write to the
shared variable before the synchronization point (also known as a 'barrier'), and the
second can read from it after the synchronization point, or overwrite it.

In Practice

In practice, the C programming language was designed to be an Operating System
programming language. Operating systems are almost by definition multi-threaded
shared-memory programs and C has served its purpose well. Before C11, C did not have
a memory consistency model at all. This was not a big issue when the hardware memory
behavior was quite transparent and C compilers were not so aggressive with
optimizations. When issues would surface, developers were careful with shared
variables (by protecting them with 'volatile', for example). Also, despite the failure of
our test program, compilers are typically prudent with the introduction of writes to
memory.

But the tides are shifting. The ARM architecture has a weaker memory consistency
model than the x86, allowing more freedom in the implementation of the memory
hierarchy. Making variables 'volatile' is not sufficient any more because that only affects
the compiler, not the cache hierarchy. This implies that developers have to be more
cautious with shared data manipulation. And they have to be able to rely on the
compiler to behave as specified by the C11 language standard: when it comes to
memory consistency, C99 is not sufficient.

Compilers themselves also become more aggressive when it comes to optimizations due
to much improved static analysis techniques. Not all compiler engineers are aware that
optimizations can be harmful to multi-threading. For many years, a debate is ongoing
about the proper optimization level to compile the Linux kernel. See for example:

http://unix.stackexchange.com/questions/153788/linux-

cannot-compile-without-gcc-optimizations-implications

and this one about permissible optimizations related to undefined behavior:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=71892

 Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

7

The Test Program and the C11 Language Standard

Given this long introduction, we can now understand what the C11 standard has to say
about the test program.

First, the standard defines the notion of 'conflicting' actions (C11:5.1.2.4p2):

"Two expression evaluations conflict if one of them modifies a memory location and
the other one reads or modifies the same memory location."

The term conflicting is not entirely intuitive, as it seems to imply something is wrong.
This is not the case. It just means that the actions are related through a common
memory location.

Next, the standard defines data race and specifies that a program with a data race is not
valid (C11:5.1.2.4:p25):

"The execution of a program contains a data race if it contains two conflicting
actions in different threads, at least one of which is not atomic, and neither happens
before the other. Any such data race results in undefined behavior."

The data race clause provides three techniques to avoid that two conflicting actions turn
into a data race. The first is to ensure that the conflicting actions are in the same thread.
The second technique is to use atomic, which we will ignore here because the test
program does not use it. The third technique is to establish that the actions have a
specific order.

In the test program, there are three conflicting actions that are relevant to the error: the
initial write to sharedVar, the write to sharedVar in the loop, and the read of

sharedVar after the loop. These actions are all performed by T1. This implies there is
no data race for these conflicting actions (technique 1: all conflicting actions are in the
same thread). The fact that T2 runs simultaneously with T1 for a while does not affect
the order of the conflicting actions since T2 does not read or modify the shared variable.

Technically, the program contains more conflicting actions that need to be analyzed. For
example, there is variable argT2 that is written by T1 and read by T2. Such analysis will
show that all conflicting actions are in the same thread or properly ordered according to
the C11 standard.

Hence it is concluded that the test program is a valid C11 program. There is no
undefined behavior and the compiler is wrong to introduce read and write actions of
sharedVar in T2 in an optimization.

History and Further Reading

The error was first reported in 2007 by the author for the GCC OpenMP compiler and
discussed at length on the OpenMP mailing list. Unlike C at the time, OpenMP did have a
memory consistency model. Unfortunately that OpenMP list is no longer on-line and

 Solid Sands B.V. / Postbus 7897 / 1008 AB Amsterdam / The Netherlands
Phone + 31 20 244 0199 / KvK 61176249

www.solidsands.nl

8

only some fragments of the discussion remain in the internet's archive, for example
here:

 http://web.archive.org/web/20090108032918/http://openmp.o

rg/pipermail/omp/2007/000845.html

The report did make it into GCC's Bugzilla, but it was not resolved at the time:

 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31862

With the approval of C11 in 2012, C gained a precise model of memory consistency. The
error then became an error in the implementation of C11 too, in addition to OpenMP.
The error was finally fixed in GCC-5, in 2015, while the last GCC-4 update, GCC 4.9.3 in
June 2015, still contains the rogue optimization. This common optimization may also be
present in other compilers.

For more reading into memory consistency, the works of Hans-J. Boehm are worth
studying (http://hboehm.info/pubs.html). A good start is this report by Boehm:

 http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf

The title of this report from 2004, Threads Cannot Be Implemented As a Library, precisely
refers to the kind of optimization discussed here: a compiler has to be aware of the
memory consistency model, and the language standard needs to define such a model if it
is used for shared memory multi-threaded programming.

	Abstract
	The Test Program
	Lessons
	Background: Memory Consistency Models
	In Practice
	The Test Program and the C11 Language Standard
	History and Further Reading

