

1

Code Coverage Analysis Exposes Invisible Bug

in the GNU C++ Library

Marcel Beemster & Vladislav Yaglamunov – Solid Sands

Code coverage analysis improves confidence in a test suite. It demonstrates which parts
of the source code are actively used as a result of test execution. We run our test suite
for the implementation of the C and C++ standard. Code coverage analysis tells us which
lines of the library implementation are "stimulated" by the tests.

We are actually most interested in the parts of the library implementation that are not
executed as a result of the test run. They indicate our test suite is incomplete. For every
line of code that is not executed, we add a new test if possible. In Figure 1, the segment
to the right is almost completely covered. The segment to the left is from a similar
function that has a very similar implementation. It is not covered at all, while the tests
for the left and the right segment are closely matching. What is going on here? More
about that later.

Figure 1: Code coverage of parts of the functions _M_futex_wait_until() on the left side and

_M_futex_wait_until_steady() on the right. Edited for legibility.

As another example, in the math library implementation there are sections that deal
with subnormal numbers. Subnormal floating point numbers have values that are close
to zero and use a special floating point encoding. Because of the alternative encoding
scheme, special case code is used to handle very small numbers. If our test suite does not
include test cases with subnormal numbers, it will not generate coverage for these
special cases. We will then add tests to the suite that verify correct operation of the
library with close-to-zero values.

Thus, code coverage analysis often points our attention to special case code. Such code
may handle corner cases that do not occur during normal execution, is less frequently
used, and may therefore hide subtle errors in the implementation. We also find bugs by
focusing on these spots and writing specific tests for them. That is the normal operation
of test development in combination with code coverage analysis.

2 Code Coverage Analysis Exposes Invisible Bug in the GNU C++ Library

Diving Deeper
But that is not the whole story. What if we cannot write a test to cover the code that is
not executed?

It happens that a particular condition in a conditional statement can never be true (or
false) because it is redundant. If a condition has already been shown to be false, the code
after a recheck of the same condition is simply unreachable by any possible test case.
This happens more often than you might imagine and it is frequently related to
optimization of special cases. For example, a string handling function may have an early
check on empty strings with a quick exit, while the generic part of the function may also
have its own case for zero-length strings. It is not wrong for the generic part to recheck
the special case. It makes the generic code less dependent on specific preconditions and
it makes its implementation independent of future changes to the earlier special case
optimization. For the robustness of the code under future code changes, it may be better
to leave the unreachable case in place.

The analysis of unreachable code is not trivial. One has to dive into the code and fully
understand what is going on. If the code is not your own, this can be a real effort. We
must preserve our analysis to avoid doing it again after the next coverage run.

For these cases, instead of writing a test, we write a justification. The justification is
simply text that documents why the code is unreachable. The language has to be so clear
that future reviewers do not have to repeat the analysis. In this way, a record is created
of the analysis effort. If your code coverage tool supports it, it can recognize how the
justification is attached to the code and it will not flag it again.

Uncovering a Performance Error in the GNU C++ Library
And sometimes, unreachable code can point to an error in another part of the code. We
recently filed an error for the function _M_futex_wait_until_steady() in the

<future> header of the GNU C++ library implementation. You can follow its progress

at https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105673. This is what
happened.

Code coverage analysis of the <future> header showed that a significant portion of the

second part of the _M_futex_wait_until() function is not executed by our tests.
That is what you can see in Figure 1 on the left side. Analysis revealed that the
implementation of _M_futex_wait_until() makes a call to the kernel to ask if it
can perform a certain service efficiently. If the kernel cannot do that, the
_M_futex_wait_until() function has a fallback to perform its operation less
efficiently. Since modern kernels can perform the service efficiently, the fallback method
is unreachable for the test suite. So far so good and we can write a justification that is
valid for modern kernels.

Now, there is also a function _M_futex_wait_until_steady() that performs a
very similar task as _M_futex_wait_until(), and which contains the same test and
fallback. In this case we found that the fallback code was covered! (See Figure 1, right
panel.) That was unexpected and it pointed to a coding mistake. Once observed, it was
not hard to find.

3 Code Coverage Analysis Exposes Invisible Bug in the GNU C++ Library

In Figure 2, we see the code that is just before the fallback code. In the left panel, with

the correct scenario, there are two else cases. The second else is covered as indicated

by the green label on the left. That is the exit of the function if the kernel provides the

efficient service. In the right panel, the second else is missing, and that case end up in

the fallback code.

Figure 2: Correct control flow for _M_futex_wait_until() on the left and a missing else in

_M_futex_wait_until_steady() on the right. Edited for legibility.

Instead of speeding up kernel interaction, both the fast and the slow service are engaged

in the function _M_futex_wait_until_steady(). This coding mistake does not

lead to a functional error in this instance, but the slowdown is certainly not intended.

Security and Backdoors

In the case of the futex error, we only found it by being smart enough to observe that

some part of the code should not be covered. "Being smart enough" unfortunately does

not fit into safety and security processes because we cannot reliably reproduce it.

Yet, code coverage analysis deserves a place in safety and security processes for

software. Backdoors in code placed by adversaries are typically triggered by conditions

that are not part of the functional specifications. If code coverage reveals that the code

after if (password == "LegendaryWarrior") is not executed, it warrants a

second look. That does not require being smart enough, just a procedure for checking

code coverage analysis results.

The Case for Code Coverage Analysis

Requirements-based testing is a great standard for creating reliable software. The

reality is that test suite creation is hardly ever driven just by the requirements. This is

because the requirements are almost never defined at the same, detailed, level as the

implementation itself. Code coverage analysis is a great help to point out missing tests.

Coverage analysis is not easy. Yet, when executed judiciously, it verifies the

4

completeness of functional requirements and the rigor of the code itself. To have a test

suite that fully covers all application code is a backbone for the future development of

that code. It will prevent code to be broken inadvertently and it serves as a vehicle to

communicate the purpose of the code that it covers. Make code coverage analysis part of

your development process too.

Solid Sands’ SuperGuard test suite for the Standard C Library is a requirements-based

test suite. Out of the box, it has high structural code and branch coverage for standard C

library implementations. It is used for the qualification and certification of standard C

library implementations and it reports about the traceability between requirements and

test cases.

(c) Copyright 2023 by Solid Sands B.V., Amsterdam, The Netherlands
SuperTest™ and SuperGuard™ are trademarks of Solid Sands B.V., Amsterdam, The Netherlands

