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Abstract 

One of the great aspects of functional safety standards is that they do not care about the 
origin of a tool that is used for a safety critical application. Focusing on compilers in 
particular, it does not matter if it is bought from a reputable supplier or downloaded from 
GitHub. What does matter is that the process for qualification as described in the functional 
safety standard is followed. C and C++ compilers are tools. The ISO 26262 standard, and 
similar standards such as IEC 61508, have different requirements for tools than for the 
software that is developed for the application itself. ISO 26262 offers four different paths to 
tool qualification. Out of these four, the path of qualification by “Validation of the compiler” 
is the most practical and common. Validation shows compliance of the compiler to its 
specification. This is performed by using a test suite that is based on the C and C++ language 
definition. Luckily, and unlike most other programming languages, the C and C++ languages 
have well defined ISO specifications. This paper explores compiler qualification for safety-
critical applications with an emphasis on open-source compilers. 

Functional Safety 
The goal of functional safety is to reduce the risk of harm to people to an acceptable level in the case of a 
hazard or failure. That is a lofty goal, but it does not tell us what to do to achieve safety. It also leaves a lot to 
be defined. Also note that it does not mention open-source software and with further refinement of this goal 
into functional safety standards this remains true. Functional safety does not depend on software being open 
source or not. 

The refinement of our functional safety goal is embodied by functional safety standards. These standards are 
rooted in expertise gained in this area for over 150 years (since the industrial revolution). Instead of 
prescribing how systems shall be designed (which would stifle innovation and, over time, miss the point) they 
start from safety requirements that leave freedom in how they are achieved. For specific application areas, 
further refinements of these requirements exist in the form of standards that define safety processes. 
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Figure 1: Functional safety standards in the domains of electronics and software 

 

In the past ten years, cars have turned into software defined vehicles. For this reason, safety of software has 
become one of the primary pillars of car safety. Figure 1 lists a number of functional safety standards that deal 
with software. On the left side is the family of IEC 61508 related standards, on the right side two aviation 
related standards, one for general aviation software, the second for tools such as compilers. The standards 
below IEC 61508 are refinements of it for specific domains, with a key difference: they are more how-to 
oriented, providing a specified process. Instead, the IEC 61508 standard from which they are derived states 
the requirements for safety-critical systems, but does not prescribe how those requirements are to be met. As 
a result, the more process-oriented standards are easier to work with because they tell you what to do. 
However, if that process does not fit with a specific situation, one can fall back on the requirements of IEC 
61508. 

Focusing on compilers specifically, there is a difference between their treatment in the IEC 61508 family and 
the aviation standards. Compilers are (off-line) tools. They are the most safety-critical tool in the arsenal of the 
application developer, but they are not embedded into the target application. They are also deterministic and 
have a clear and simple input-output relation. This makes them less critical than the software that goes into, 
for example, the brakes control software. For that reason, IEC 61508 allows the qualification of compilers by 
treating them as a black box. One has to verify that the output of the compiler is compliant with its 
specification, but it is not required to dive into the inner workings of the compiler. The difference with the 
aviation standards is that they do not treat the compiler as a black box. This has important implications for 
open-source compilers, as we will see later. 
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Evaluation of the Risk of a Compiler 
 

 

Figure 2: Compiler complexity dwarfs the complexity of most safety-critical software in a car 

 

Despite the black-box approach to compiler qualification, compiler complexity, and by implication their ability 
to insert defects into the application, cannot be underestimated. The number of lines in modern open-source 
compilers such as Clang and Gcc is in the order of five million. That is significantly more than the number of 
lines in most safety-critical systems in cars. Open-source compilers are used for many safety-critical 
applications. Yet, their development spans more than 40 years (for Gcc), they have thousands of contributors, 
they are not developed with functional-safety standards in mind, they are not compliant to guidelines such as 
MISRA, and they do not have a test set that comes even remotely close to full statement or branch coverage. 
These are all significant risk-factors. 

 

 

Figure 3: Application testing with compiler and hardware in the loop 

 

For these and other reasons such as the complexity of the specification, compiler qualification cannot be 
taken lightly. ISO 26262 does not require that every tool used for application development is qualified. If it can 
be shown not to pose a safety risk, its qualification can be skipped (see Tool Confidence levels in ISO 26262) . 
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An important criterion here is the question if, in the case of a compiler defect, its occurrence is detected by 
other verification techniques. A potential argument in favor of this is sketched in Figure 3. In this figure, on the 
left side is the application that is compiled for and executed on a target processor. The block on the right side 
represents the collection of unit and integration tests for the application. These tests are executed with the 
hardware, and by extension the compiler, in the loop. As required for ASIL D (ISO 26262’s highest level), the 
tests should show full statement and branch coverage of the source code. 

Is this setup good enough to ensure that all potential compiler defects are found? ISO 26262 states that one 
has to be conservative with this assessment and, given the complexity of the compiler and its role in the 
development, by default the answer is no. 

The following example gives one argument why this is the case. 

 

 

Figure 4: A simple loop compiled without optimization 

 

Figure 4, in the left upper corner, shows a simple but not completely trivial function. This code has complete 
statement and branch coverage at the source code level when the function is called with f(1). Granted, that 
is not a very thorough test, but it is sufficient to pass the code coverage requirement. At the right side of the 
picture is the assembly code generated by the compiler when the function is compiled without optimizations. 
The plusses in front of every instruction show that we have full coverage also at this level, with the same test 
case. This includes the conditional branch instruction (jge), which only gets a plus if it is called both in the 
taken and non-taken direction. 

So far so good, but compiling without optimization generates extremely inefficient code. This may be 
acceptable in some cases, but for mass-market applications it can be extremely costly. Optimized code can 
easily be three times faster than not optimized code and for computation-oriented code it can be closer to ten 
times faster because of auto-vectorization. A factor three means that for the same performance one can use a 
three times slower processor, which may be three times cheaper, which requires three times less power, 
requires less cooling and so has smaller packaging. This turns compiler optimization into tangible cost savings. 

Let’s turn on the optimizer. 
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Figure 5: A simple loop compiled with -O2 level optimization, with assembly code coverage 

 

Figure 5 shows the same function, but now compiled with optimization level -O2. This is the level at which the 
Linux kernel is compiled by default, which makes it relevant. The number of assembly instructions has 
increased significantly. This is because the loop is unrolled and vectorized. At the instruction level, only the 
green instructions are fully covered by the test expression f(1). It is just a very small percentage of all 
instructions. The pink instructions are conditional branches that are taken in one direction but not both. 
Although f(1) is not a representative test for the loop, this example highlights that a trivial test can be 
sufficient for source code coverage, but wholly unsuited for assembly code coverage. 

Taking one step back, we should ask if there is a risk to having untested instructions, let’s call them dark code, 
in the target application. If we have full coverage at the source code level, is there any risk to the application 
containing dark code that may never be executed? The answer to this is clearly yes, there is a risk. There is no 
guarantee or indication whatsoever that this code will not be executed in the actual application. It just means 
that the precise calls of the function to trigger the dark code were not part of the test set. The compiler has 
generated this code to deal with specific cases. If left untested, we cannot assume that the assembly code is 
correct, which is the code running on the final hardware. 

To achieve maximal instruction and branch coverage for this example, at least four additional, precisely 
targeted function calls are needed. Even with these additional tests, full branch coverage cannot be achieved. 
Analysis shows that the two conditional jumps marked in red are only ever taken in one way. These branch 
instructions are inserted by the compiler to take care of a specific case, but they are shadowed by a previous 
handling of that same case. For example, the red instruction je 0x4005d0 on the left side and the pink 
instruction ja 0x4004c5 both compare the argument n to seven, although in a different way. In theory, a 
further optimization of the code could clean up the redundancy of the second conditional branch, but there is 
no requirement that the compiler does that. 
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Figure 6: Ensuring confidence in the detection of compiler malfunctions 

 

Back to the context of the analysis above. The original question was: can we skip compiler qualification by 
relying on application-level testing? The answer of ISO 26262 to that question is: yes, if you can demonstrate 
sufficient confidence in the measures to detect that the compiler has malfunctioned and has produced 
erroneous output. 

But in our analysis of the assembly code for the simple loop it is shown that that is no simple task. To avoid 
untested code to be part of the application, you have to work hard. Not only do you need to have 
instrumentation in place for assembly-level code coverage analysis and generate additional tests to cover any 
gaps, but you must also be prepared for an in-depth analysis of redundant code that the compiler may have 
accidentally inserted in order to justify that it cannot be covered. 

This requires a level of effort and expertise that goes beyond what is normally expected by ISO 26262 and it 
can be avoided by doing compiler qualification. After all, the goal of compiler qualification is to provide the 
confidence that it correctly translates the source code to target instructions so that the application developer 
does not have to worry about it. 

Options for Open-Source Compiler Qualification 
Now given that it is hard to rely on application-level testing to gain confidence in the compiler, ISO 26262 
provides four options for compiler qualification. It does not differentiate between open-source compilers and 
other compilers, but here we will evaluate them from the perspective of an open-source compiler. The four 
qualification methods are: 

● Increased confidence from use 
● Evaluation of the compiler development process 
● Validation of the compiler 
● Development according to a safety standard 

The increased confidence from use argument can be used if you already have so much experience with the 
compiler that you can confidently state that you know of any issues with it, because you have already used it 
for a sufficiently long time. The argument is hard to use because in practice compilers, and certainly open-
source compilers, are regularly updated. Because of the complexity of compilers and their internal 
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architecture (a pipeline of stages where a defect affects every next stage), confidence in a previous version 
does not carry over to the next. Additionally, a change in the compilation options and even a different type of 
source code, stimulates a compiler in such a different way that it cannot be treated as the same compiler. 

The evaluation of the compiler development argument can be made if there is evidence that the 
development of the compiler is done in compliance to an appropriate standard such as Automotive 
SPICE. In practice, open-source compilers have guidelines for their development but they are never 
developed with functional safety in mind. They may originate from an academic or enthusiast project 
and, in the case of Gcc, span a development time of more than forty years. This makes it hard, if not 
impossible, to substantiate this argument. 

Validation of the compiler means to provide evidence that the compiler complies with its 
specification. This method treats the compiler as a black box and evaluates it as-is, without regard for 
its provenance. It can be applied to any compiler, including open source. The advantage of C and C++ 
compilers is that there is a well-defined standard that defines them, and that (commercial) test suites 
exist that can be used to verify them. 

Development according to a safety standard is the final option for compiler qualification but to the 
best of our knowledge, no compilers exist (open source or not) that are developed like this. It 
requires, for example, that their software development adheres to Part 6 of the ISO 26262 standard 
and can show evidence for it. No compilers exist that were created accordingly. 

In short, the third method, qualification by validation of the compiler, is the most versatile method. It can be 
applied to any compiler. The tools and framework that works with one version of the compiler for a specific 
use case can be reused for a new version or a different use case. If the programming language is the same, it 
can even be used for a different compiler. This reduces the risk of compiler lock-in. Although that is not a 
safety risk per se, for products with a life span of decades it is a risk to consider. 

A further advantage of compiler qualification is that it can be mostly decoupled from the application 
development time-line. “Mostly” because one needs to establish the use case for the compiler but as stated, it 
is not difficult to change the use case once the qualification framework is set up. 

Validation of the Compiler 
It is good to realize that at this point in the paper we are already well under way with the process that ISO 
26262 defines for compiler safety. It starts by evaluating the compiler. We have done that by establishing that 
the compiler has a significant impact on the correctness of the generated code (which ends up in the 
hardware) and that without substantial effort, application-level testing cannot be relied on as a detector of 
defects in the compiler. Qualification by validation is also the most versatile option. 

The next step in the process is validation of the compiler by verifying that it complies with its specification. 
This covers a couple of aspects: 

● Verification of the compiler. For this we need a specification of the compiler to verify against. For C 
and C++, and a few other programming languages this is easy because there are well-established, 
internationally approved, standards. This is not the case for many other programming languages. 
While they are all properly documented, documentation is often unclear when it comes to edge cases 
of behavior. An advantage of programming language standards is that they describe the behavior of 
the program at execution time. They do not describe exactly what assembly instructions must be 
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generated. This leaves freedom to the compiler to optimize code and it makes it possible that one 
language standard is valid for many different types of implementations. A further advantage is that it 
allows us to include the whole toolchain (compiler, assembler, linker, loader) to be considered part of 
the “compiler” because they are all included in the execution framework that establishes the required 
behavior of the program. It does not mean that all of these components are qualified as stand-alone 
components. It means that the toolchain as a whole is capable of implementing the programming 
language. 

Next, we need a test suite that is organized in such a way that it defines the relation between the 
language specification and the tests. This is a non-trivial requirement because most test-suites, 
including those maintained for the common open-source compilers, are built and maintained as 
regressions suites - they are a catalogue of tests for bug fixes. Fortunately, for C and C++ commercial 
offerings exist that are properly organized. 

And finally, one needs to establish the use case of the compiler. This is mostly related to the compiler 
options used by the application, but it can include other aspects of the environment. It must include 
all variables that can potentially change the generated instructions. 
With these ingredients, we can run the test suite for the given use case and have confidence that all 
aspects of the language specification are verified. 

● The next step is to verify how the implementation reacts to incorrect input. The C and C++ standards 
define that the compiler must generate diagnostics for syntax and typing violations. Therefore, these 
checks should be included in the test suite. They do not require, and this is not expected, that 
diagnostics are generated for programs with undefined behavior, not even at run-time. This is a 
weakness of these programming languages that also has positive aspects, such as efficiency, and 
which must be documented in the compiler safety manual that results from the qualification effort. It 
can be mitigated by the use of programming guidelines and static analysis tools. 

● The final step is the analysis of the results of testing. It is not necessary to fix any defects. Although the 
open-source community can be extremely quick to provide a fix (the author once received a patch to 
Gcc within hours of the report, on a Sunday morning), there is no expectation of any timeline for 
repair. The objective is not to prove the compiler is flawless, as no existing compiler is perfect. Rather, 
the focus is on documenting identified defects and providing clear workarounds. This process ensures 
that application developers are aware of potential issues and can mitigate them. By addressing these 
typically specific and avoidable behaviors, we systematically build confidence in the compiler as a 
dependable tool for safety-critical development. 

The final requirement of ISO 26262 is documenting the complete qualification process (not only the test 
results, the work arounds, but also the quality of the test suite itself as used in the process as well as the 
confidence therein). Although not required as such, it is often useful to create a separate safety manual that is 
focused on the application developer. It contains a description of the limits of the use case for which the 
qualification is valid, and the list of defects and mitigations that they can apply in the application development 
process. 

And What About Testing Optimizations? 
Even for a dedicated, requirements-based, test suite for a language implementation it is not a given that it 
properly implements optimization testing. The reason is that in the compiler, the implementation of 
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optimizations comprises a significant part of the compiler source code. But in the language specification it 
occupies not more than a single paragraph that states that an optimization shall not change the behavior or 
the program. Since this is a negative requirement (it requires the absence of change), testing it exhaustively 
requires an infinite number of tests, which is neither practical nor actionable. 

Optimization testing often relies on running benchmarks because they contain code that is the target of 
optimizations. Although that may say something about the efficacy of the optimization, it seldom provides a 
good test. This is because benchmarks, like application-level tests described earlier, are also not targeting the 
special cases of an optimization. Furthermore, many benchmarks do not verify the result of the test which 
means that a defect will not be diagnosed. 

In a good test suite (i.e.,  SuperTest from Solid Sands), you should expect  a substantial collection of 
optimization tests showing the following properties. The first is that test tests exist to systematically trigger 
every optimization. In many compilers, individual optimization stages can be turned on and off. By verifying 
that this changes the generated code, we know that the test interacts with the optimization. This helped us 
find gaps in optimization coverage for which we then created new tests. The second is that the tests have 
sufficient assembly level code coverage. For SuperTest, we created additional tests and test cases until we 
verified that assembly code coverage is maximal. 

A Safety Certified Compiler 
The documents produced for the qualification can now be taken to an assessor for independent review. This 
does not have to be an outside consultant, it depends on the level of independence required. ISO 26262 
provides guidance for this. The most independent review is to get the process certified. Technically, 
certification does not mean that the compiler itself is guaranteed to be perfect or even certified. The task of 
the certification authority is to assess that the qualification process has been implemented faithfully. This is 
what is certified. When people speak of a “safety certified compiler,” it means “a compiler that has gone 
through a qualification process based on a specific functional safety standard for which the process and 
documentation where certified by an independent certification body and you should really read the 
documentation in order to understand what the range of safety related applications is for which this compiler 
can be used.” 

Qualification of Open-Source Compilers 
As we have seen above, there are no barriers to the qualification of open-source compilers for the ISO 26262 
standard, and by extension for the whole family of IEC 61508 related standards. Referring back to Figure 1, 
this is different for the aviation standards. They do not allow the compiler to be treated as a black box and 
they require the documentation of the compiler’s development process and its internals. These objectives are 
difficult to achieve for open-source compilers. However, that this is not unique to open source, it is also true 
for proprietary compilers - possibly even to a higher degree because of their closed nature. 

As an aside, compilers are used in developments for aviation but if they are not qualified it requires that their 
output, the generated assembly code, is inspected to verify that it matches the source code.  
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Conclusion 

 

Figure 6: Compiler qualification is a repeatable process driven by standards such as ISO 26262 

 

Awareness of software safety has grown a lot over the past fifteen years and the need for this is accelerating. 
A major driver is the transformation of cars into software defined vehicles.  
Compilers are great tools that take away much of the complexity for application developers allowing 
application-level programming to be focused on higher levels of abstraction (C or C++ vs assembly). Compilers 
are non-trivial tools with considerable internal complexity, often more complex than the application that is 
being compiled. For that reason, they cannot be ignored in the process of qualifying an application for use in a 
safety-critical component. Compiler qualification falls under (off-line) tool qualification processes defined by 
IEC 61508-like functional safety standards. These processes are less strict than general application 
development processes because the tool does not become part of the safety-critical component. 

Verification of the compiler can be used as the method to qualify it. This method permits treating the compiler 
as a black box. Given that language specifications define the behavior of the implementation, which includes 
the toolchain, this also makes it possible to consider the assembler and linker as part of the black box. 

This is not true for libraries. Although standard libraries for C and C++ are defined by the same language 
standards, libraries cannot be considered part of the compiler tool. Libraries are compiled by the compiler and 
their code is linked with the application and becomes part of the safety-critical component. For libraries, the 
software related processes described in Part 6 of ISO 26262 must be applied, similar to application software in 
general. 

An important advantage of compiler qualification is that it provides confidence that the compiler does its job. 
This means that compiler verification can be decoupled from the verification of the other parts of the safety-
critical component - verification of the software can stop at the source code level and does not have to 
consider defects in the compiler beyond those described in the compiler safety manual. This benefit can 
extend to additional projects if the same compiler is used there, saving time and effort. 
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