
Feature: Embedded design

 www.electronicsworld.co.uk May/June 2020 33

Optimisation verification in
embedded system design
By Dr Marcel Beemster, Chief Technical O!cer, Solid Sands

A dvanced compiler optimisations are not always
robust and well-tested. Recent experiments with
optimisation testing have uncovered errors in
every compiler technology available, leading
to the conclusion that advanced optimisation
testing is currently an underdeveloped skill of

compiler developers, requiring urgent action.
Compiler optimisations have huge economic value. Comparing

unoptimised with optimised code demonstrates !"een-fold faster
execution speed of the post-optimisation generated programme.
#at is a large factor, but not uncommon to achieve for advanced
loop optimisations, such as vectorisation. As for economics,
!"een times greater execution e$ciency means a slower hence
cheaper target processor, with lower power consumption and heat
dissipation, and potentially a smaller size – important in almost all
embedded applications.

For a typical compiler, over half its source code is related to
optimisation; being a signi!cant part, errors do occur.

“Non-existent” optimisations?
When writing any test, it is preferable to start from the language
speci!cation – a not-so-straightforward task for optimisations;
from a C/C++ language de!nition point of view, optimisations
hardly exist. #e C programming standard C11 in section 5.1.2.3
states: “#e semantic descriptions in this International Standard
describe the behaviour of an abstract machine in which issues of
optimisation are irrelevant.”

#e language de!nition speci!es the behaviour of every
particular language construct, but it does not specify how or when

A more complicated control flow
di!erentiates between special
cases and makes them faster

that behaviour is met. Optimisation is a so-called “non-functional”
requirement, making it hard – if not impossible – to verify against
a speci!cation.

To avoid these challenges, we developed new optimisation tests
in our compiler test suite SuperTest. As an example, a text search
for tail recursion in the SuperTest suites immediately reports
around ten tests, excluding those that accidentally test for tail
recursion or were not documented as doing so. Because of the
nature of the compiler as a series of steps, every test is exposed to
every component of the pipeline, including all optimisation stages.
#is means the chance of tests unintentionally hitting optimisations
is high, which is what we see. #e weak link is that this is not
good enough to meet the formal requirements of functional
safety standards, and rightly so! #ese standards demand a less
‘accidental’ approach, which requires a rigid framework to link tests
to the optimisation requirements.

Lessons learned
To get inspiration for code that triggers optimisation, we turned
to benchmarks – some of them well known in the !eld of

Feature: Embedded design

34 May/June 2020 www.electronicsworld.co.uk

performance testing. Not only are there (arti! cial) benchmarks
written explicitly to trigger optimisations, but compiler developers
have also worked hard to improve the performance of benchmark
code by adding optimisations to their compilers. From this we
learned a number of lessons that can be summarised as follows:

Lesson 1: Benchmarks are not the best tests of compiler.
optimisation correctness, since they don’t always verify their
results.

e number-one metric for a benchmark is how fast its
compiled code runs on the target processor.

But, high priority is not always given to verifying if what’s
computed is also correct. Which begs the question: how do we
know if optimisations performed on the benchmark are correct?

For some graphics benchmarks, the generated image simply
needs to be reviewed to assess correctness, which may not
always work in a continuous integration environment.

Lesson 2: Benchmarks are not written to deal with di! erent
data models.

While developing SuperTest, we considered the many
di% erent data models used in embedded computing platforms.
Computing with a di% erent data model – for example, using
24-bit instead of 32-bit integers – may result in di% erent, even
incorrect, results. Going back to Lesson 1, if the result is not
veri! ed you have no evidence that optimisations take the data
model into account.

Lesson 3: Benchmarks may not be free of unde" ned
behaviour.

Unde! ned behaviour can easily happen when a benchmark
is compiled for a smaller data-model than intended. # e
danger of this is that some compilers use the assumed absence
of unde! ned behaviour as a property that can be optimised.
For example, if a compiler analysis shows a branch in the code
that leads to unde! ned behaviour, perhaps triggered by an
over& owing signed integer computation, the compiler may
assume that the branch is never executed and remove it. # is

may not have been the intention of the benchmark, but it does
make it run faster!

Lesson 4: Benchmarks do not execute all the generated code.
Even when a benchmark veri! es its computed result as correct,

if it doesn’t execute all the generated code there’s no evidence
that the transformation that created the non-executed code is
correct. # is is not simply a case of ‘dead-code’ in the benchmark
being optimised away. On the contrary, when compiled without
optimisation, all generated code may be executed. # e reason for
not-executed code existing a" er optimisation is that optimising
transformations o" en duplicate and specialise code. As part
of this process, a much more complicated control & ow is
constructed to di% erentiate between special cases and make them
faster. Unless every special case is present in the benchmark,
some parts of the generated code will not be executed.

It should now be clear that even if your compiler manages to
optimise a benchmark suite really well, there’s no guarantee that
its optimisations are correct.

Executing the entire generated code
Not all benchmarks su% er from these de! ciencies, however.
EEMBC’s CoreMark, for example, goes to great lengths to verify
its computed results.

Verifying test results, working with the right data model and
having no unde! ned behaviour, should be all properties of the
test source code, even though executing all the generated code
a" er optimisation is dependent on the transformations applied
by the compiler. # ese can’t be known beforehand, and although
execution of all generated code is not guaranteed, in SuperTest
we have ensured this property is true.

Optimisations by stages

This graphic shows an abstract view of the chaotic journey a
program takes through the compiler, like the ball in a pinball
machine.

A compiler is a pipeline with stages,
where each stage performs a specifi c
analysis and/or transformation of
the code. Many of these stages are
optimisations that improve some
aspects of code quality for the target
processor. Whilst the code’s path is not
truly chaotic, and is usually deterministic,
it is true that a small change in the
source code or a minor update to an
early compiler transformation can have
a huge e" ect on the program’s shape as
it moves from one stage to the next. This
makes it di! cult for a test to aim at a
specifi c optimisation inside the compiler.

Feature: Embedded design

 www.electronicsworld.co.uk May/June 2020 35

To analyse generated-code execution, we have used a
number of di%erent compilers and performed a run-time
coverage analysis at the assembly level. In e%ect, we have
performed assembly-level MC/DC analysis, looking both at
structural coverage and branch coverage. #en, for all possible
optimisations, we looked at the code specialisation the compiler
applied, and analysed the speci!c inputs needed to hit all the
generated specialised code. For example, take the following
relatively simple loop:

 int f(int n) {
 int total = 0;
 for (int i=0; i<n; i++){
 total += i & n;
 }
 }

It is a su$ciently complex loop that the compiler doesn’t
apply algebraic analysis that would remove the loop completely.
Instead, the loop can be vectorised: At source-code level, a single
call of the loop with a value of n di%erent from zero achieves
full structural code coverage. Also, the single branch due to the
loop condition is called in both ways at run-time, achieving full
branch coverage.

Looking at the generated assembly code at a high optimisation
level, we see that the code has expanded signi!cantly and
contains no less than !"een conditional branches. Calling the
loop with n=999 (a non-trivial number that’s not a multiple of
the loop-unroll factor or the vector length) results in about 80%
code coverage (reasonably good), but coverage of less than half of
the control &ow edges in the generated code (not so good).

To achieve maximal code and branch coverage, the optimised code
has to be called with at least !ve di%erent values of the loop value n.

One interesting, perhaps surprising, discovery was that
compilers generate redundant conditional branches. #is was
observed in multiple, di%erent, compiler technologies, so it’s not
merely an artifact of one compiler. It happens in this loop, too.
Redundant branches re-check a condition that was established
earlier in its &ow of control. As a result, the condition always has
the same value and the redundant conditional branch is always
taken in the same direction. Full branch coverage for these
redundant branches cannot be achieved.

#e unwelcome result of redundant branches is that maximal
code and branch coverage is less than full code and branch
coverage. Also, the redundant branches are not easy to analyse,
so understanding when maximal coverage is not equal to full
coverage is a non-trivial and, above all, time-consuming exercise.

Taking all this into account, we created a generalised method
of constructing for every test a range of test cases that achieve
maximal coverage for all the compilers we analysed. Since our
methods are robust and work independently of a particular
compiler technology, we believe that our tests and test-cases are
highly likely to achieve maximal coverage for other compiler
technologies, as well.

Old and new
#rough our analyses, we found optimisation errors in all the
compiler technologies. #is doesn’t mean that optimisations can’t
be trusted in general, but it does suggest that you should tread
carefully.

Here is the result of running a SuperTest test on a compiler
commonly used in embedded systems:

 s[0] = 42;
 (sp[0]) = -1; / *(sp[0]) is an alias of s[0] */
 if(s[0] == 42){ /* Incorrectly yields true */

#is error is a result of an incorrect value propagation, from
the !rst statement to the third, through variable s[0], whilst that
variable was modi!ed by the second statement through an alias.
#e dangerous aspect of this compiler error is that it is due to
an optimisation applied without any optimisation options being
given to the compiler. So, even if you think no optimisation
takes place, it still happens. #is is alright as far as the language
de!nition is concerned, but many developers would not expect it
to happen.

Here is another result from the optimisation suite, compiled
with Intel’s ICC compiler. #is compiler is well regarded and
known for its high-performance loop optimisations, but, as shown
here, it is not perfect:

 void s482(double *a, double *b, double *c, int len) {
 int i;
 for (i = INT_MIN; i < INT_MIN+len; i++) {
 a[i-INT_MIN] = b[i-INT_MIN] + c[i-INT_MIN];
 if (c[i-INT_MIN] > b[i-INT_MIN])
 break;
 }

#e special property of this test is that its iterator i operates

close to the lower bound of the integer domain, something the
optimiser is not prepared for. As a result, the program crashes at
run-time with a segmentation fault. We also found optimisation
errors in other trusted technologies such as CLANG/LLVM
compilers, GCC compilers and Microso"’s compiler.

Know your compiler
#e most important conclusion is that if you want to use compiler
optimisations, you must know the weaknesses of your compiler.
We have found no compiler technology immune to optimisation
errors. Sometimes the errors are obscure and easy to avoid. In
other cases, they are so severe you should consider not using
a speci!c optimisation. So make sure that you have a test suite
that veri!es the correctness of optimisations performed by the
compiler – and not only a benchmark suite aimed at performance
analysis.

Optimisation is not a functional requirement of the
compiler, and every compiler technology has its own speci!c
implementation strategy for optimisation.

