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Optimisation verification in 
embedded system design
By Dr Marcel Beemster, Chief Technical O!cer, Solid Sands

A dvanced compiler optimisations are not always 
robust and well-tested. Recent experiments with 
optimisation testing have uncovered errors in 
every compiler technology available, leading 
to the conclusion that advanced optimisation 
testing is currently an underdeveloped skill of 

compiler developers, requiring urgent action. 
Compiler optimisations have huge economic value. Comparing 

unoptimised with optimised code demonstrates !"een-fold faster 
execution speed of the post-optimisation generated programme. 
#at is a large factor, but not uncommon to achieve for advanced 
loop optimisations, such as vectorisation. As for economics, 
!"een times greater execution e$ciency means a slower hence 
cheaper target processor, with lower power consumption and heat 
dissipation, and potentially a smaller size – important in almost all 
embedded applications.

For a typical compiler, over half its source code is related to 
optimisation; being a signi!cant part, errors do occur.

“Non-existent” optimisations?
When writing any test, it is preferable to start from the language 
speci!cation – a not-so-straightforward task for optimisations; 
from a C/C++ language de!nition point of view, optimisations 
hardly exist. #e C programming standard C11 in section 5.1.2.3 
states: “#e semantic descriptions in this International Standard 
describe the behaviour of an abstract machine in which issues of 
optimisation are irrelevant.”

#e language de!nition speci!es the behaviour of every 
particular language construct, but it does not specify how or when 

A more complicated control flow 
di!erentiates between special 
cases and makes them faster

that behaviour is met. Optimisation is a so-called “non-functional” 
requirement, making it hard – if not impossible – to verify against 
a speci!cation.

To avoid these challenges, we developed new optimisation tests 
in our compiler test suite SuperTest. As an example, a text search 
for tail recursion in the SuperTest suites immediately reports 
around ten tests, excluding those that accidentally test for tail 
recursion or were not documented as doing so. Because of the 
nature of the compiler as a series of steps, every test is exposed to 
every component of the pipeline, including all optimisation stages. 
#is means the chance of tests unintentionally hitting optimisations 
is high, which is what we see. #e weak link is that this is not 
good enough to meet the formal requirements of functional 
safety standards, and rightly so! #ese standards demand a less 
‘accidental’ approach, which requires a rigid framework to link tests 
to the optimisation requirements. 

Lessons learned
To get inspiration for code that triggers optimisation, we turned 
to benchmarks – some of them well known in the !eld of 
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performance testing. Not only are there (arti! cial) benchmarks 
written explicitly to trigger optimisations, but compiler developers 
have also worked hard to improve the performance of benchmark 
code by adding optimisations to their compilers. From this we 
learned a number of lessons that can be summarised as follows: 

Lesson 1: Benchmarks are not the best tests of compiler. 
optimisation correctness, since they don’t always verify their 
results.

# e number-one metric for a benchmark is how fast its 
compiled code runs on the target processor. 

But, high priority is not always given to verifying if what’s 
computed is also correct. Which begs the question: how do we 
know if optimisations performed on the benchmark are correct? 

For some graphics benchmarks, the generated image simply 
needs to be reviewed to assess correctness, which may not 
always work in a continuous integration environment.

Lesson 2: Benchmarks are not written to deal with di! erent 
data models. 

While developing SuperTest, we considered the many 
di% erent data models used in embedded computing platforms. 
Computing with a di% erent data model – for example, using 
24-bit instead of 32-bit integers – may result in di% erent, even 
incorrect, results. Going back to Lesson 1, if the result is not 
veri! ed you have no evidence that optimisations take the data 
model into account.

Lesson 3: Benchmarks may not be free of unde" ned 
behaviour. 

Unde! ned behaviour can easily happen when a benchmark 
is compiled for a smaller data-model than intended. # e 
danger of this is that some compilers use the assumed absence 
of unde! ned behaviour as a property that can be optimised. 
For example, if a compiler analysis shows a branch in the code 
that leads to unde! ned behaviour, perhaps triggered by an 
over& owing signed integer computation, the compiler may 
assume that the branch is never executed and remove it. # is 

may not have been the intention of the benchmark, but it does 
make it run faster!

Lesson 4: Benchmarks do not execute all the generated code.
Even when a benchmark veri! es its computed result as correct, 

if it doesn’t execute all the generated code there’s no evidence 
that the transformation that created the non-executed code is 
correct. # is is not simply a case of ‘dead-code’ in the benchmark 
being optimised away. On the contrary, when compiled without 
optimisation, all generated code may be executed. # e reason for 
not-executed code existing a" er optimisation is that optimising 
transformations o" en duplicate and specialise code. As part 
of this process, a much more complicated control & ow is 
constructed to di% erentiate between special cases and make them 
faster. Unless every special case is present in the benchmark, 
some parts of the generated code will not be executed.

It should now be clear that even if your compiler manages to 
optimise a benchmark suite really well, there’s no guarantee that 
its optimisations are correct.

Executing the entire generated code 
Not all benchmarks su% er from these de! ciencies, however. 
EEMBC’s CoreMark, for example, goes to great lengths to verify 
its computed results. 

Verifying test results, working with the right data model and 
having no unde! ned behaviour, should be all properties of the 
test source code, even though executing all the generated code 
a" er optimisation is dependent on the transformations applied 
by the compiler. # ese can’t be known beforehand, and although 
execution of all generated code is not guaranteed, in SuperTest 
we have ensured this property is true.

Optimisations by stages        

This graphic shows an abstract view of the chaotic journey a 
program takes through the compiler, like the ball in a pinball 
machine. 

A compiler is a pipeline with stages, 
where each stage performs a specifi c 
analysis and/or transformation of 
the code. Many of these stages are 
optimisations that improve some 
aspects of code quality for the target 
processor. Whilst the code’s path is not 
truly chaotic, and is usually deterministic, 
it is true that a small change in the 
source code or a minor update to an 
early compiler transformation can have 
a huge e" ect on the program’s shape as 
it moves from one stage to the next. This 
makes it di!  cult for a test to aim at a 
specifi c optimisation inside the compiler.
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To analyse generated-code execution, we have used a 
number of di%erent compilers and performed a run-time 
coverage analysis at the assembly level. In e%ect, we have 
performed assembly-level MC/DC analysis, looking both at 
structural coverage and branch coverage. #en, for all possible 
optimisations, we looked at the code specialisation the compiler 
applied, and analysed the speci!c inputs needed to hit all the 
generated specialised code. For example, take the following 
relatively simple loop:

 int f(int n) {
 int total = 0;
 for (int i=0; i<n; i++){
 total += i & n;
 }
 }

It is a su$ciently complex loop that the compiler doesn’t 
apply algebraic analysis that would remove the loop completely. 
Instead, the loop can be vectorised: At source-code level, a single 
call of the loop with a value of n di%erent from zero achieves 
full structural code coverage. Also, the single branch due to the 
loop condition is called in both ways at run-time, achieving full 
branch coverage.

Looking at the generated assembly code at a high optimisation 
level, we see that the code has expanded signi!cantly and 
contains no less than !"een conditional branches. Calling the 
loop with n=999 (a non-trivial number that’s not a multiple of 
the loop-unroll factor or the vector length) results in about 80% 
code coverage (reasonably good), but coverage of less than half of 
the control &ow edges in the generated code (not so good).

To achieve maximal code and branch coverage, the optimised code 
has to be called with at least !ve di%erent values of the loop value n.

One interesting, perhaps surprising, discovery was that 
compilers generate redundant conditional branches. #is was 
observed in multiple, di%erent, compiler technologies, so it’s not 
merely an artifact of one compiler. It happens in this loop, too. 
Redundant branches re-check a condition that was established 
earlier in its &ow of control. As a result, the condition always has 
the same value and the redundant conditional branch is always 
taken in the same direction. Full branch coverage for these 
redundant branches cannot be achieved.

#e unwelcome result of redundant branches is that maximal 
code and branch coverage is less than full code and branch 
coverage. Also, the redundant branches are not easy to analyse, 
so understanding when maximal coverage is not equal to full 
coverage is a non-trivial and, above all, time-consuming exercise.

Taking all this into account, we created a generalised method 
of constructing for every test a range of test cases that achieve 
maximal coverage for all the compilers we analysed. Since our 
methods are robust and work independently of a particular 
compiler technology, we believe that our tests and test-cases are 
highly likely to achieve maximal coverage for other compiler 
technologies, as well.

Old and new
#rough our analyses, we found optimisation errors in all the 
compiler technologies. #is doesn’t mean that optimisations can’t 
be trusted in general, but it does suggest that you should tread 
carefully.

Here is the result of running a SuperTest test on a compiler 
commonly used in embedded systems:

 s[0] = 42;
 *(sp[0]) = -1; /* *(sp[0]) is an alias of s[0] */
 if( s[0] == 42 ){ /* Incorrectly yields true */

#is error is a result of an incorrect value propagation, from 
the !rst statement to the third, through variable s[0], whilst that 
variable was modi!ed by the second statement through an alias. 
#e dangerous aspect of this compiler error is that it is due to 
an optimisation applied without any optimisation options being 
given to the compiler. So, even if you think no optimisation 
takes place, it still happens. #is is alright as far as the language 
de!nition is concerned, but many developers would not expect it 
to happen.

Here is another result from the optimisation suite, compiled 
with Intel’s ICC compiler. #is compiler is well regarded and 
known for its high-performance loop optimisations, but, as shown 
here, it is not perfect:

 void s482(double *a, double *b, double *c, int len) {
 int i;
 for (i = INT_MIN; i < INT_MIN+len; i++) {
 a[i-INT_MIN] = b[i-INT_MIN] + c[i-INT_MIN];
 if (c[i-INT_MIN] > b[i-INT_MIN])
 break;
 }

 
#e special property of this test is that its iterator i operates 

close to the lower bound of the integer domain, something the 
optimiser is not prepared for. As a result, the program crashes at 
run-time with a segmentation fault. We also found optimisation 
errors in other trusted technologies such as CLANG/LLVM 
compilers, GCC compilers and Microso"’s compiler.

Know your compiler
#e most important conclusion is that if you want to use compiler 
optimisations, you must know the weaknesses of your compiler. 
We have found no compiler technology immune to optimisation 
errors. Sometimes the errors are obscure and easy to avoid. In 
other cases, they are so severe you should consider not using 
a speci!c optimisation. So make sure that you have a test suite 
that veri!es the correctness of optimisations performed by the 
compiler – and not only a benchmark suite aimed at performance 
analysis.

Optimisation is not a functional requirement of the 
compiler, and every compiler technology has its own speci!c 
implementation strategy for optimisation.  


